
Fall 2002. 10.34. Numerical Methods Applied to Chemical Engineering

Homework # 3. Nonlinear algebraic equations and matrix eigenvalue problems

Assigned Friday 9/20/02. Due Friday 9/27/02

Problem 1. Modeling chemical reaction with diffusion in a catalyst pellet

In HW # 1, we considered the use of the finite difference method to convert a boundary 
value problem into a set of linear algebraic equations. In HW # 2, we considered the use of 
Newton’s method to solve sets of nonlinear algebraic equations. In this problem, we com-
bine these two approaches to solve a boundary value problem that contains a nonlinear 
term involving chemical reaction. This problem is inspired by the discussion of noniso-
thermal catalyst particles in section 3.9 of G. F. Froment and K. B. Bischoff, Chemical 
Reactor Analysis and Design, 2nd ed., Wiley, 1990.

We consider the case of a spherical catalyst pellet of radius  (see figure below). 

FIGURE 1. Nonisothermal reaction/diffusion within a catalyst pellet. (left) Geometry of problem 
with known surface concentration, temperature. (right) Spherical shell control volume used to 
derive governing equations.

Within the catalyst pellet, we have the chemical reaction

(EQ 1)

that follows a first order rate law,

(EQ 2)

The heat of reaction, , is assumed to be negative (exothermic reaction), and we model 
the temperature dependence of the rate constant as

(EQ 3)
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 is the activation energy,  is the ideal gas constant, and  is the value of the rate con-
stant at a reference temperature .

We wish to calculate the profiles of the concentration of A, , and the temperature  
within the catalyst pellet. We assume that at the surface of the catalyst pellet, the concen-
tration and temperature are known, yielding the Dirichlet boundary conditions

(EQ 4)

We obtain the governing equation for the concentration of A by applying a mass balance 
to the shell control volume between  and  (see figure above),

(EQ 5)

The first term is the flux of A into the control volume by diffusion, the second term is the 
corresponding flux out, and the third is the rate of disappearance of A due to chemical 
reaction.  is the effective diffusion constant for A within the catalyst pellet. Dividing by 

 yields,

(EQ 6)

This yields the differential equation

(EQ 7)

Similarly, we derive a governing equation for the temperature field by writing an energy 
balance on the spherical shell control volume,

(EQ 8)

The first and second terms are the fluxes in and out of the control volume due to heat con-
duction.  is the effective thermal conductivity of the catalyst pellet. The third term is the 
generation of heat due to chemical reaction. Division by  yields

(EQ 9)

The governing equation for the temperature field is therefore
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(EQ 10)

We now have a set of two coupled differential equations with the boundary conditions

(EQ 11)

(EQ 12)

The first boundary condition arises from the known concentration and temperature at the 
pellet surface. This boundary condition holds when we assume that there is no external 
resistance to heat and mass transfer in the surrounding fluid. The second boundary condi-
tion arises from the symmetry condition at the center of the catalyst pellet.

We now simplify the problem for the case where the heat of reaction, diffusivity, and ther-
mal conductivity are assumed to be constant. We divide the energy balance by ,

(EQ 13)

When we add this equation to the mass balance on A, we obtain,

(EQ 14)

Integrating this equation once yields,

(EQ 15)

Dividing by  yields,

(EQ 16)

From the symmetry boundary condition at the center of the spherical pellet, we know that 
 must be zero, so that a second integration yields

(EQ 17)

We have employed the known concentration and temperature at the catalyst surface (from 
the first boundary condition) to obtain the value of .
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Upon rearrangement, this yields a linear relation between the temperature and concentra-
tion fields.

(EQ 18)

Writing the temperature dependence of the rate constant explicitly, the boundary value 
problem that we must solve is the following,

Find the function  that satisfies on  the differential equation

(EQ 19)

subject to the boundary conditions

(EQ 20)

where the temperature field is calculated directly from the concentration field as

(EQ 21)

To solve this problem, we again use the method finite differences to convert the boundary 
value problem into a system of algebraic equations. Now, however, the system of alge-
braic equations is nonlinear and must be solved iteratively.

To implement the finite difference method in spherical coordinates, we place a grid of 
points  within the interior of the domain, with , and require 
that at every grid point , the differential equation be satisfied locally,

(EQ 22)

Here we have used the notation , . 

We define the values of  midway between the  grid point and its neighbors as

(EQ 23)

and form a central difference approximation for the second derivative,
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(EQ 24)

For each of the mid-point first derivatives, we use another finite difference approximation,

(EQ 25)

(EQ 26)

We can write the finite difference approximation for the second derivative as

(EQ 27)

in which case the nonlinear algebraic equation for interior grid point  takes the form

(EQ 28)

In our previous calculation using finite differences in one dimension, we saw that the 
resulting set of linear equations had non-zero matrix elements only on the principal diago-
nal, the diagonal immediately above, and the diagonal immediately below. This tridiago-
nal structure meant that the equations could be solved very quickly in  operations 
using Gaussian elimination. Here, we have a set of nonlinear equations; however, we see 
that once again, the equation for grid point  depends only on the values of the concentra-
tion at grid points , , and . This means that the Jacobian matrix will have a tridi-
agonal structure, and that we can solve very quickly the linear equation at each Newton’s 
method iteration,

(EQ 29)

We note that some modification of the above equation is required for the first and last grid 
points. At the last grid point, , the discretized form of the differential equation is

(EQ 30)
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We see that this equation refers to the value of the concentration at the non-existent grid 
point . We correct this problem by placing the fictitious grid point at the boundary, i.e. 

, and employ the boundary condition to write . The algebraic equa-
tion for grid point  then becomes

(EQ 31)

We have a similar problem at the first grid point , where the discretized form of the 
differential equation is

Again, we need to employ a boundary condition to remove the dependence on the ficti-
tious grid point concentration . We place the zeroth grid point at the origin, , and 
use the symmetry boundary condition,

(EQ 32)

If we were evaluating the derivative at an interior point, we would use the central differ-
ence approximation,

(EQ 33)

When we try to apply this formula at , we obtain a formula

(EQ 34)

that we cannot use because there is no grid point at . We could use the one-sided differ-
ence formula,

(EQ 35)

but this is not as accurate as a central difference approximation. To obtain a more-accurate 
one-sided finite difference approximation for the boundary derivative, we use the values at 

 to fit locally a quadratic description of the concentration profile,

N 1+

rN 1+ R= cA N 1+, cA s,=

N

AN N 1–, cA N 1–, ANNcA N, AN N 1+, cA s,+ +

DA
1–
rN

2
kref

Ea–

RTref
-------------

Tref

TN
--------- 1– 

 exp cA N,– 0=

j 1=

A10cA 0, A11cA 1, A12cA 2, DA
1–
r1

2
kref

Ea–

RTref
-------------

Tref

T1
--------- 1– 

 exp cA 1,–+ + 0=

cA 0, r0 0=

rd

dcA

r0

0=

rd

dcA

rj

cA j 1+, cA j 1–,–

rj 1+ rj 1––
--------------------------------------≈

r0 0=

rd

dcA

r0

cA 1, cA 1–,–

r1 r 1––
----------------------------≈

r 1–

rd

dcA

r0

cA 1, cA 0,–

r1 r0–
--------------------------≈

r0 r1 r2, ,
September 23, 2002 6



(EQ 36)

We can immediately determine the value of  by noticing that at ,

(EQ 37)

Similarly, evaluating the polynomial approximation at  and  yields the equations

(EQ 38)

(EQ 39)

When these equations are solved for  and , we can approximate the derivative at 
 by

(EQ 40)

When the grid points are uniformly spaced, this yields the approximation formula,

(EQ 41)

As the symmetry boundary condition states that this derivative is zero, we have the fol-
lowing expression to estimate  from  and ,

(EQ 42)

The modified algebraic equation for the first grid point is therefore

(EQ 43)

We have introduced the problem in terms of the familiar real-life parameters such as diffu-
sivity and activation energy; however, we can use dimensional analysis to convert the 
problem to a dimensionless form that provides clearer insight into the physical behavior.
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(EQ 44)

The governing equation for the concentration field, written in terms of this scaled dis-
tance, is

(EQ 45)

Next, we define a scaled concentration variable ,

(EQ 46)

The governing equation of this scaled concentration is

(EQ 47)

We now take as the reference condition for the rate constant the known surface tempera-
ture,

(EQ 48)

The governing equation then becomes

(EQ 49)

We now define the Thiele modulus  as,

(EQ 50)

When , the effect of diffusion limitation is minimal, but when , we expect that 
the reaction rate will be affected by the slow diffusion of A into the catalyst pellet.

Similarly, we write the activation energy in dimensionless form as the parameter

(EQ 51)

The governing equation in dimensionless form is now

(EQ 52)

r ξR=

DA ξd
d ξ2

ξd

dcA ξ2
R

2
kref

Ea–

RTref
-------------

Tref

T
--------- 1– 

 exp cA– 0=

ΨA

ΨA cA cA s,⁄≡

ξd
d ξ2

ξd

dΨA ξ2 R
2
kref

DA
---------------

 
 
  Ea–

RTref
-------------

Tref

T
--------- 1– 

 exp ΨA– 0=

kref ks≡ k Ts( )= Tref Ts≡

ξd
d ξ2

ξd

dΨA ξ2 R
2
ks

DA
------------

 
 
  Ea–

RTs
---------

Ts

T
----- 1– 

 exp ΨA– 0=

Φ

Φ R ks DA⁄≡

Φ 1« Φ 1»

γ
Ea

RTs
---------≡

ξd
d ξ2

ξd

dΨA ξ2Φ2 γ 1
Ts

T
-----– 

 exp ΨA– 0=
September 23, 2002 8



Finally, we use the linear relation between the temperature and concentration fields to 
write

(EQ 53)

We now define the dimensionless number  as the relative importance of the heat of reac-
tion compared to thermal conduction,

(EQ 54)

We then write the exponential term in the governing equation as,

(EQ 55)

so that the differential equation becomes,

(EQ 56)

The boundary conditions in dimensionless form are

(EQ 57)

The number of independent system parameters has now been reduced to three, , , and 
.

Question A.1. Write a MATLAB program that employs the finite difference method 
outlined above to solve the problem in dimensionless form. As input, take the values 
of the three dimensionless parameters, , , and . The program should plot the 
dimensionless concentration profile and compute the value of the effectiveness factor 
(defined below).

To determine the effectiveness factor, we calculate the total rate of reaction within the cat-
alyst pellet,

(EQ 58)
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(EQ 59)

The product of the first two factors is the total reaction rate that we would observe if there 
were no concentration (or temperature) gradients within the catalyst particle. We define 
the effectiveness factor from

(EQ 60)

so that we can calculate the effectiveness factor from the dimensionless profile,

(EQ 61)

To perform this integration, you can use the MATLAB integration function trapz(), using 
as input the vector of values of  at each grid point (including  and ) and 
the vector of integrand values at each grid point.

Hints:

1. A reasonable initial guess is that  is uniformly equal to one when the values of all 
three coefficients are zero or very small.

2. If you call the MATLAB solver fsolve() without informing it that the Jacobian is sparse, 
the amount of CPU time required to solve the problem will be very large. You have one of 
two options. First, you know where the non-zero elements of the Jacobian will be, even if 
you don’t calculate their exact values. You can set with optimset() the options flag ‘Jacob-
Pattern’ to tell MATLAB that you are providing a sparse matrix S with the same pattern of 
non-zero elements as the Jacobian. With this information, fsolve() can perform the finite 
difference estimation of the Jacobian more effectively. For a tridiagonal system, the spar-
sity pattern matrix is generated by the following code:

S = spalloc(N,N,3*N);

S = S + diag(ones(N,1));

S = S + diag(ones(N-1,1),1);

S = S + diag(ones(N-1,1),-1);

Alternatively, for this problem, the Jacobian may be calculated analytically in the routine 
that you provide. This is even more computationally efficient than the method above, but 
requires a little more programming on your part. In this case, use the optimset() function 
to set the ‘Jacobian’ flag to ‘on’.  I have found for typical values of the grid point size a 
speed-up of a factor of 10x when I compute the Jacobian analytically.
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3. For better convergence of fsolve(), I would use optimset() to set the ‘LargeScale’ flag 
to ‘off’.

4. You should increase the number of grid points until you can no longer see any signifi-
cant change in the plot of the concentration profile of the value of the effectiveness factor. 
Physically, we expect the highest gradients to occur near the particle surface, so you may 
wish to generate a grid that has a tighter spacing of points in this region. This will yield 
more accurate results with the same overall number of grid points. Note that the finite dif-
ference equations derived above did not assume a uniform grid point spacing, except for 
the boundary derivative at . Therefore, you want to make sure that you maintain

(EQ 62)

(EQ 63)

Question A.2. Using this program, makes plots of the effectiveness factor  vs. the 
Thiele modulus  for the case  and the following values of ,

(EQ 64)

Make a single master plot with all curves.

Problem 2. Eigenvalues of 3x3 matrices

Consider the following three matrices,

(EQ 65)

Question 2.A. Which of these matrices can you tell by inspection, without computa-
tion, must have all eigenvalues be real numbers?

Question 2.B. Using Gershorgin’s theorem, what are the bounds on the possible val-
ues of the eigenvalues of A? Is is possible that any of the eigenvalues of A are nega-
tive?

Question 2.C. Which of these matrices are normal?

Question 2.D.For every matrix that you know has all real eigenvalues, compute the 
eigenvalues and the normalized (unit-length) eigenvectors by hand. Show your calcu-
lations.
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