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Chapter 1

Introduction and Growth Facts

1.1 Introduction

� In 2000, GDP per capita in the United States was $32500 (valued at 1995 $ prices).
This high income level reßects a high standard of living.

� In contrast, standard of living is much lower in many other countries: $9000 in Mexico,
$4000 in China, $2500 in India, and only $1000 in Nigeria (all Þgures adjusted for

purchasing power parity).

� How can countries with low level of GDP per person catch up with the high levels

enjoyed by the United States or the G7?

� Only by high growth rates sustained for long periods of time.

� Small differences in growth rates over long periods of time can make huge differences
in Þnal outcomes.

1
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� US per-capita GDP grew by a factor ≈ 10 from 1870 to 2000: In 1995 prices, it was

$3300 in 1870 and $32500 in 2000.1 Average growth rate was ≈ 1.75%. If US had grown
with .75% (like India, Pakistan, or the Philippines), its GDP would be only $8700 in

1990 (i.e., ≈ 1/4 of the actual one, similar to Mexico, less than Portugal or Greece). If
US had grown with 2.75% (like Japan or Taiwan), its GDP would be $112000 in 1990

(i.e., 3.5 times the actual one).

� At a growth rate of 1%, our children will have ≈ 1.4 our income. At a growth rate of
3%, our children will have ≈ 2.5 our income. Some East Asian countries grew by 6%
over 1960-1990; this is a factor of ≈ 6 within just one generation!!!

� Once we appreciate the importance of sustained growth, the question is natural: What
can do to make growth faster?

� Equivalently: What are the factors that explain differences in economic growth, and
how can we control these factors?

� In order to prescribe policies that will promote growth, we need to understand what
are the determinants of economic growth, as well as what are the effects of economic

growth on social welfare. That�s exactly where Growth Theory comes into picture...

1Let y0 be the GDP per capital at year 0, yT the GDP per capita at year T, and x the average annual

growth rate over that period. Then, yT = (1 +x)Ty0. Taking logs, we compute ln yT − ln y0 = T ln(1 +x) ≈
Tx, or equivalenty x ≈ (ln yT − ln y0)/T.

2
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1.2 TheWorld Distribution of Income Levels andGrowth

Rates

� As we mentioned before, in 2000 there were many countries that had much lower
standards of living than the United States. This fact reßects the high cross-country

dispersion in the level of income.

� Figure 12 shows the distribution of GDP per capita in 2000 across the 147 countries in
the Summers and Heston dataset. The richest country was Luxembourg, with $44000

GDP per person. The United States came second, with $32500. The G7 and most of

the OECD countries ranked in the top 25 positions, together with Singapore, Hong

Kong, Taiwan, and Cyprus. Most African countries, on the other hand, fell in the

bottom 25 of the distribution. Tanzania was the poorest country, with only $570 per

person � that is, less than 2% of the income in the United States or Luxemburg!

� Figure 2 shows the distribution of GDP per capita in 1960 across the 113 countries
for which data are available. The richest country then was Switzerland, with $15000;

the United States was again second, with $13000, and the poorest country was again

Tanzania, with $450.

� The cross-country dispersion of income was thus as wide in 1960 as in 2000. Never-
theless, there were some important movements during this 40-year period. Argentina,

Venezuela, Uruguay, Israel, and South Africa were in the top 25 in 1960, but none made

it to the top 25 in 2000. On the other hand, China, Indonesia, Nepal, Pakistan, India,

and Bangladesh grew fast enough to escape the bottom 25 between 1960 and 1970.

2Figures 1, 2 and 3 are reproduced from Barro (2003).

3
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These large movements in the distribution of income reßects sustained differences in

the rate of economic growth.

� Figure 3 shows the distribution of the growth rates the countries experienced between
1960 and 2000. Just as there is a great dispersion in income levels, there is a great

dispersion in growth rates. The mean growth rate was 1.8% per annum; that is, the

world on average was twice as rich in 2000 as in 1960. The United States did slightly

better than the mean. The fastest growing country was Taiwan, with a annual rate as

high as 6%, which accumulates to a factor of 10 over the 40-year period. The slowest

growing country was Zambia, with an negative rate at −1.8%; Zambia�s residents show
their income shrinking to half between 1960 and 2000.

� Most East Asian countries (Taiwan, Singapore, South Korea, Hong Kong, Thailand,
China, and Japan), together with Bostwana (an outlier as compared to other sub-

Saharan African countries), Cyprus, Romania, and Mauritus, had the most stellar

growth performances; they were the �growth miracles� of our times. Some OECD

countries (Ireland, Portugal, Spain, Greece, Luxemburg and Norway) also made it

to the top 20 of the growth-rates chart. On the other hand, 18 out of the bottom 20

were sub-Saharan African countries. Other notable �growth disasters� were Venezuela,

Chad and Iraq.

1.3 Unconditional versus Conditional Convergence

� There are important movements in the world income distribution, reßecting substantial
differences in growth rates. Nonetheless, on average income and productivity differ-

ences are very persistent.

4
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� Figure 43 graphs a country�s GDP per worker in 1988 (normalized by the US level)
against the same country�s GDP per worker in 1960 (again normalized by the US level).

Most observations close to the 45o-line, meaning that most countries did not experi-

enced a dramatic change in their relative position in the world income distribution. In

other words, income differences across countries are very persistent.

� This also means that poor countries on average do not grow faster than rich countries.
And another way to state the same fact is that unconditional convergence is zero. That

is, if we ran the regression

∆ ln y2000−1960 = α + β · ln y1960,

the estimated coefficient β is zero.

� On the other hand, consider the regression

∆ ln y1960−90 = α + β · ln y1960 + γ ·X1960

where X1960 is a set of country-speciÞc controls, such as levels of education, Þscal and

monetary policies, market competition, etc. Then, the estimated coefficient β turns

to be positive (in particular, around 2% per annum). Therefore, if we look in a group

of countries that share similar characteristics (as measured by X), the countries with

lower intial income tend to grow faster than their rich counterparts, and therefore the

poor countries tend to catch up with the rich countries in the same group. This is

what we call conditional convergence.

� Conditional convergence is illustrated in Figures 5 and 6, for the group of OECD
countries and the group of US states, respectively.

3Figure 4 is reproduced from Jones (1997).

5
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1.4 Stylized Facts

The following are stylized facts that should guide us in the modeling of economic growth

(Kaldor, Kuznets, Romer, Lucas, Barro, Mankiw-Romer-Weil, and others):

1. In the short run, important ßuctuations: Output, employment, investment, and con-

sumptio vary a lot across booms and recessions.

2. In the long run, balanced growth: Output per worker and capital per worker (Y/L and

K/L) grow at roughly constant, and certainly not vanishing, rates. The capital-to-

output ratio (K/Y ) is nearly constant. The return to capital (r ) is roughly constant,

whereas the wage rate (w) grows at the same rates as output. And, the income shares

of labor and capital (wL/Y and rK/Y ) stay roughly constant.

3. Substantial cross-country differences in both income levels and growth rates.

4. Persistent differences versus conditional convergence.

5. Formal education: Highly correlated with high levels of income (obviously two-direction

causality); together with differences in saving rates can �explain� a large fraction of the

cross-country differences in output; an important predictor of high growth performance.

6. R&D and IT: Most powerful engines of growth (but require high skills at the Þrst

place).

7. Government policies: Taxation, infrastructure, inßation, law enforcement, property

rights and corruption are important determinants of growth performance.

8. Democracy: An inverted U-shaped relation; that is, autarchies are bad for growht, and

democracies are good, but too much democracy can slow down growth.

6
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9. Openness: International trade and Þnancial integration promote growth (but not nec-

essarily if it is between the North and the South).

10. Inequality: The Kunzets curve, namely an inverted U-shaped relation between income

inequality and GDP per capita (growth rates as well).

11. Ferility: High fertility rates correlated with levels of income and low rates of economic

growth; and the process of development follows a Malthus curve, meaning that fertility

rates initially increase and then fall as the economy develops.

12. Financial markets and risk-sharing: Banks, credit, stock markets, social insurance.

13. Structural transformation: agriculture→manifacture→services.

14. Urbanization: family production→organized production; small vilages→big cities; ex-
tended domestic trade.

15. Other institutional and social factors: colonial history, ethnic heterogeneity, social

norms.

The theories of economic growth that we will review in this course seek to explain how

all the above factors interrelate with the process of economic growth. Once we understand

better the �mechanics� of economic growth, we will be able, not only to predict economic

performance for given a set of fundamentals (positive analysis), but also to identify what

government policies or socio-economic reforms can promote social welfare in the long run

(normative analysis).

7
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Chapter 2

The Solow Growth Model (and

looking ahead)

2.1 Centralized Dictatorial Allocations

� In this section, we start the analysis of the Solow model by pretending that there

is a benevolent dictator, or social planner, that chooses the static and intertemporal

allocation of resources and dictates that allocations to the households of the economy

We will later show that the allocations that prevail in a decentralized competitive

market environment coincide with the allocations dictated by the social planner.

2.1.1 The Economy, the Households and the Social Planner

� Time is discrete, t ∈ {0, 1, 2, ...}. You can think of the period as a year, as a generation,
or as any other arbitrary length of time.

� The economy is an isolated island. Many households live in this island. There are

9
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no markets and production is centralized. There is a benevolent dictator, or social

planner, who governs all economic and social affairs.

� There is one good, which is produced with two factors of production, capital and labor,
and which can be either consumed in the same period, or invested as capital for the

next period.

� Households are each endowed with one unit of labor, which they supply inelasticly to
the social planner. The social planner uses the entire labor force together with the

accumulated aggregate capital stock to produce the one good of the economy.

� In each period, the social planner saves a constant fraction s ∈ (0, 1) of contemporane-
ous output, to be added to the economy�s capital stock, and distributes the remaining

fraction uniformly across the households of the economy.

� In what follows, we let Lt denote the number of households (and the size of the labor
force) in period t, Kt aggregate capital stock in the beginning of period t, Yt aggregate

output in period t, Ct aggregate consumption in period t, and It aggregate investment

in period t. The corresponding lower-case variables represent per-capita measures: kt =

Kt/Lt, yt = Yt/Lt, it = It/Lt, and ct = Ct/Lt.

2.1.2 Technology and Production

� The technology for producing the good is given by

Yt = F (Kt, Lt) (2.1)

where F : R2
+ → R+ is a (stationary) production function. We assume that F is

continuous and (although not always necessary) twice differentiable.

10
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� We say that the technology is �neoclassical� if F satisÞes the following properties

1. Constant returns to scale (CRS), or linear homogeneity:

F (µK, µL) = µF (K,L), ∀µ > 0.

2. Positive and diminishing marginal products:

FK(K,L) > 0, FL(K,L) > 0,

FKK(K,L) < 0, FLL(K,L) < 0.

where Fx ≡ ∂F/∂x and Fxz ≡ ∂2F/(∂x∂z) for x, z ∈ {K,L}.

3. Inada conditions:

lim
K→0

FK = lim
L→0

FL =∞,
lim
K→∞

FK = lim
L→∞

FL = 0.

� By implication, F satisÞes

Y = F (K,L) = FK(K,L)K + FL(K,L)L

or equivalently

1 = εK + εL

where

εK ≡ ∂F

∂K

K

F
and εL ≡ ∂F

∂L

L

F

Also, FK and FL are homogeneous of degree zero, meaning that the marginal products

depend only on the ratio K/L.

And, FKL > 0, meaning that capital and labor are complementary.

11



George-Marios Angeletos

� Technology in intensive form: Let

y =
Y

L
and k =

K

L
.

Then, by CRS

y = f(k) (2.2)

where

f(k) ≡ F (k, 1).

By deÞnition of f and the properties of F,

f(0) = 0,

f 0(k) > 0 > f 00(k)

lim
k→0

f 0(k) = ∞, lim
k→∞

f 0(k) = 0

Also,

FK(K,L) = f 0(k)

FL(K,L) = f(k)− f 0(k)k

� Example: Cobb-Douglas technology

F (K,L) = KαL1−α

In this case,

εK = α, εL = 1− α

and

f(k) = kα.

12
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2.1.3 The Resource Constraint, and the Law of Motions for Cap-

ital and Labor

� Remember that there is a single good, which can be either consumed or invested. Of
course, the sum of aggregate consumption and aggregate investment can not exceed

aggregate output. That is, the social planner faces the following resource constraint :

Ct + It ≤ Yt (2.3)

Equivalently, in per-capita terms:

ct + it ≤ yt (2.4)

� Suppose that population growth is n ≥ 0 per period. The size of the labor force then
evolves over time as follows:

Lt = (1 + n)Lt−1 = (1 + n)tL0 (2.5)

We normalize L0 = 1.

� Suppose that existing capital depreciates over time at a Þxed rate δ ∈ [0, 1]. The

capital stock in the beginning of next period is given by the non-depreciated part of

current-period capital, plus contemporaneous investment. That is, the law of motion

for capital is

Kt+1 = (1− δ)Kt + It. (2.6)

Equivalently, in per-capita terms:

(1 + n)kt+1 = (1− δ)kt + it

13
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We can approximately write the above as

kt+1 ≈ (1− δ − n)kt + it (2.7)

The sum δ + n can thus be interpreted as the �effective� depreciation rate of per-

capita capital. (Remark: This approximation becomes arbitrarily good as the economy

converges to its steady state. Also, it would be exact if time was continuous rather

than discrete.)

2.1.4 The Dynamics of Capital and Consumption

� In most of the growth models that we will examine in this class, the key of the analysis
will be to derive a dynamic system that characterizes the evolution of aggregate con-

sumption and capital in the economy; that is, a system of difference equations in Ct

and Kt (or ct and kt). This system is very simple in the case of the Solow model.

� Combining the law of motion for capital (2.6), the resource constraint (2.3), and the
technology (2.1), we derive the difference equation for the capital stock:

Kt+1 −Kt = F (Kt, Lt)− δKt − Ct (2.8)

That is, the change in the capital stock is given by aggregate output, minus capital de-

preciation, minus aggregate consumption. On the other hand, aggregate consumption

is, by assumption, a Þxed fraction (1− s) of output:

Ct = (1− s)F (Kt, Lt) (2.9)

� Similarly, in per-capita terms, (2.6), (2.4) and (2.2) give the dynamics of capital

kt+1 − kt = f(kt)− (δ + n)kt − ct, (2.10)

14
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whereas consumption is given by

ct = (1− s)f(kt). (2.11)

� From this point and on, we will analyze the dynamics of the economy in per capita

terms only. Translating the results to aggregate terms is a straightforward exercise.

2.1.5 The Policy Rule

� Combining (2.10) and (2.11), we derive the fundamental equation of the Solow model :

kt+1 − kt = sf(kt)− (δ + n)kt (2.12)

Note that the above deÞnes kt+1 as a function of kt :

Proposition 1 Given any initial point k0 > 0, the dynamics of the dictatorial economy are

given by the path {kt}∞t=0 such that

kt+1 = G(kt), (2.13)

for all t ≥ 0, where
G(k) ≡ sf(k) + (1− δ − n)k.

Equivalently, the growth rate of capital is given by

γt ≡
kt+1 − kt
kt

= γ(kt), (2.14)

where

γ(k) ≡ sφ(k)− (δ + n), φ(k) ≡ f(k)/k.

Proof. (2.13) follows from (2.12) and rearranging gives (2.14). QED

� G corresponds to what we will the policy rule in the Ramsey model. The dynamic

evolution of the economy is concisely represented by the path {kt}∞t=0 that satisÞes
(2.12), or equivalently (2.13), for all t ≥ 0, with k0 historically given.

15
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2.1.6 Steady State

� A steady state of the economy is deÞned as any level k∗ such that, if the economy starts
with k0 = k∗, then kt = k∗ for all t ≥ 1. That is, a steady state is any Þxed point k∗ of
(2.12) or (2.13). Equivalently, a steady state is any Þxed point (c∗, k∗) of the system

(2.10)-(2.11).

� A trivial steady state is c = k = 0 : There is no capital, no output, and no consumption.
This would not be a steady state if f(0) > 0. We are interested for steady states at

which capital, output and consumption are all positive and Þnite. We can easily show:

Proposition 2 Suppose δ+n ∈ (0, 1) and s ∈ (0, 1). A steady state (c∗, k∗) ∈ (0,∞)2 for the
dictatorial economy exists and is unique. k∗ and y∗ increase with s and decrease with δ and

n, whereas c∗ is non-monotonic with s and decreases with δ and n. Finally, y∗/k∗ = (δ+n)/s.

Proof. k∗ is a steady state if and only if it solves

0 = sf(k∗)− (δ + n)k∗,

Equivalently
y∗

k∗
= φ(k∗) =

δ + n

s
(2.15)

where

φ(k) ≡ f(k)

k
.

The function φ gives the output-to-capital ratio in the economy. The properties of f imply

that φ is continuous (and twice differentiable), decreasing, and satisÞes the Inada conditions

at k = 0 and k =∞:

φ0(k) =
f 0(k)k − f(k)

k2
= −FL

k2
< 0,

φ(0) = f 0(0) =∞ and φ(∞) = f 0(∞) = 0,

16
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where the latter follow from L�Hospital�s rule. This implies that equation (2.15) has a

solution if and only if δ + n > 0 and s > 0. and the solution unique whenever it exists. The

steady state of the economy is thus unique and is given by

k∗ = φ−1
µ
δ + n

s

¶
.

Since φ0 < 0, k∗ is a decreasing function of (δ + n)/s. On the other hand, consumption is

given by

c∗ = (1− s)f(k∗).

It follows that c∗ decreases with δ + n, but s has an ambiguous effect. QED

2.1.7 Transitional Dynamics

� The above characterized the (unique) steady state of the economy. Naturally, we are
interested to know whether the economy will converge to the steady state if it starts

away from it. Another way to ask the same question is whether the economy will

eventually return to the steady state after an exogenous shock perturbs the economy

and moves away from the steady state.

� The following uses the properties of G to establish that, in the Solow model, conver-
gence to the steady is always ensured and is monotonic:

Proposition 3 Given any initial k0 ∈ (0,∞), the dictatorial economy converges asymp-
totically to the steady state. The transition is monotonic. The growth rate is positive and

decreases over time towards zero if k0 < k∗; it is negative and increases over time towards

zero if k0 > k∗.

Proof. From the properties of f, G0(k) = sf 0(k) + (1− δ− n) > 0 and G00(k) = sf 00(k) < 0.
That is, G is strictly increasing and strictly concave. Moreover, G(0) = 0, G0(0) = ∞,
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G(∞) = ∞, G0(∞) = (1 − δ − n) < 1. By deÞnition of k∗, G(k) = k iff k = k∗. It follows
that G(k) > k for all k < k∗ and G(k) < k for all k > k∗. It follows that kt < kt+1 < k∗

whenever kt ∈ (0, k∗) and therefore the sequence {kt}∞t=0 is strictly increasing if k0 < k∗. By
monotonicity, kt converges asymptotically to some �k ≤ k∗. By continuity of G, �k must satisfy
�k = G(�k), that is �k must be a Þxed point of G. But we already proved that G has a unique

Þxed point, which proves that �k = k∗. A symmetric argument proves that, when k0 > k∗,

{kt}∞t=0 is stricttly decreasing and again converges asymptotically to k∗. Next, consider the
growth rate of the capital stock. This is given by

γt ≡
kt+1 − kt
kt

= sφ(kt)− (δ + n) ≡ γ(kt).

Note that γ(k) = 0 iff k = k∗, γ(k) > 0 iff k < k∗, and γ(k) < 0 iff k > k∗. Moreover,

by diminishing returns, γ0(k) = sφ0(k) < 0. It follows that γ(kt) < γ(kt+1) < γ(k∗) = 0

whenever kt ∈ (0, k∗) and γ(kt) > γ(kt+1) > γ(k∗) = 0 whenever kt ∈ (k∗,∞). This proves
that γt is positive and decreases towards zero if k0 < k∗ and it is negative and increases

towards zero if k0 > k∗. QED

� Figure 1 depicts G(k), the relation between kt and kt+1. The intersection of the graph
of G with the 45 line gives the steady-state capital stock k∗. The arrows represent

the path {kt}∞t= for a particular initial k0.

� Figure 2 depicts γ(k), the relation between kt and γt. The intersection of the graph of
γ with the 45 line gives the steady-state capital stock k∗. The negative slope reßects

what we call �conditional convergence.�

� Discuss local versus global stability: Because φ0(k∗) < 0, the system is locally sta-

ble. Because φ is globally decreasing, the system is globally stable and transition is

monotonic.

18
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2.2 Decentralized Market Allocations

� In the previous section, we characterized the centralized allocations dictated by a social
planner. We now characterize the allocations

2.2.1 Households

� Households are dynasties, living an inÞnite amount of time. We index households by
j ∈ [0, 1], having normalized L0 = 1. The number of heads in every household grow at
constant rate n ≥ 0. Therefore, the size of the population in period t is Lt = (1 + n)t

and the number of persons in each household in period t is also Lt.

� We write cjt , kjt , bjt , ijt for the per-head variables for household j.

� Each person in a household is endowed with one unit of labor in every period, which
he supplies inelasticly in a competitive labor market for the contemporaneous wage wt.

Household j is also endowed with initial capital kj0. Capital in household j accumulates

according to

(1 + n)kjt+1 = (1− δ)kjt + it,

which we approximate by

kjt+1 = (1− δ − n)kjt + it. (2.16)

Households rent the capital they own to Þrms in a competitive rental market for a

(gross) rental rate rt.

� The household may also hold stocks of some Þrms in the economy. Let πjt be the
dividends (Þrm proÞts) that household j receive in period t. As it will become clear

later on, it is without any loss of generality to assume that there is no trade of stocks.

19



George-Marios Angeletos

(This is because the value of Þrms stocks will be zero in equilibrium and thus the value

of any stock transactions will be also zero.) We thus assume that household j holds a

Þxed fraction αj of the aggregate index of stocks in the economy, so that πjt = α
jΠt,

where Πt are aggregate proÞts. Of course,
R
αjdj = 1.

� The household uses its income to Þnance either consumption or investment in new
capital:

cjt + i
j
t = y

j
t .

Total per-head income for household j in period t is simply

yjt = wt + rtk
j
t + π

j
t . (2.17)

Combining, we can write the budget constraint of household j in period t as

cjt + i
j
t = wt + rtk

j
t + π

j
t (2.18)

� Finally, the consumption and investment behavior of household is a simplistic linear
rule. They save fraction s and consume the rest:

cjt = (1− s)yjt and ijt = sy
i
t. (2.19)

2.2.2 Firms

� There is an arbitrary number Mt of Þrms in period t, indexed by m ∈ [0,Mt]. Firms

employ labor and rent capital in competitive labor and capital markets, have access

to the same neoclassical technology, and produce a homogeneous good that they sell

competitively to the households in the economy.
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� Let Km
t and L

m
t denote the amount of capital and labor that Þrm m employs in period

t. Then, the proÞts of that Þrm in period t are given by

Πmt = F (K
m
t , L

m
t )− rtKm

t − wtLmt .

� The Þrms seeks to maximize proÞts. The FOCs for an interior solution require

FK(K
m
t , L

m
t ) = rt. (2.20)

FL(K
m
t , L

m
t ) = wt. (2.21)

� Remember that the marginal products are homogenous of degree zero; that is, they
depend only on the capital-labor ratio. In particular, FK is a decreasing function of

Km
t /L

m
t and FL is an increasing function of K

m
t /L

m
t . Each of the above conditions thus

pins down a unique capital-labor ratio Km
t /L

m
t . For an interior solution to the Þrms�

problem to exist, it must be that rt and wt are consistent, that is, they imply the same

Km
t /L

m
t . This is the case if and only if there is some Xt ∈ (0,∞) such that

rt = f 0(Xt) (2.22)

wt = f(Xt)− f 0(Xt)Xt (2.23)

where f(k) ≡ F (k, 1); this follows from the properties FK(K,L) = f 0(K/L) and

FL(K,L) = f(K/L)− f 0(K/L) · (K/L), which we established earlier.

� If (??)-(??) are satisÞed, the FOCs reduce to Km
t /L

m
t = Xt, or

Km
t = XtL

m
t . (2.24)

That is, the FOCs pin down the capital labor ratio for each Þrm (Km
t /L

m
t ), but not the

size of the Þrm (Lmt ). Moreover, because all Þrms have access to the same technology,

they use exactly the same capital-labor ratio.
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� Besides, (??) and (??) imply

rtXt + wt = f(Xt). (2.25)

It follows that

rtK
m
t + wtL

m
t = (rtXt + wt)L

m
t = f(Xt)L

m
t = F (K

m
t , L

m
t ),

and therefore

Πmt = L
m
t [f(Xt)− rtXt − wt] = 0. (2.26)

That is, when (??)-(??) are satisÞed, the maximal proÞts that any Þrm makes are

exactly zero, and these proÞts are attained for any Þrm size as long as the capital-

labor ratio is optimal If instead (??)-(??) were violated, then either rtXt+wt < f(Xt),

in which case the Þrm could make inÞnite proÞts, or rtXt +wt > f(Xt), in which case

operating a Þrm of any positive size would entail strictly negative proÞts.

2.2.3 Market Clearing

� The capital market clears if and only ifZ Mt

0

Km
t dm =

Z 1

0

(1 + n)tkjtdj

Equivalently, Z Mt

0

Km
t dm = Kt (2.27)

where Kt ≡
R Lt
0
kjtdj is the aggregate capital stock in the economy.

� The labor market, on the other hand, clears if and only ifZ Mt

0

Lmt dm =

Z 1

0

(1 + n)tdj
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Equivalently, Z Mt

0

Lmt dm = Lt (2.28)

where Lt is the size of the labor force in the economy.

2.2.4 General Equilibrium: DeÞnition

� The deÞnition of a general equilibrium is more meaningful when households optimize

their behavior (maximize utility) rather than being automata (mechanically save a

constant fraction of income). Nonetheless, it is always important to have clear in mind

what is the deÞnition of equilibrium in any model. For the decentralized version of the

Solow model, we let:

DeÞnition 4 An equilibrium of the economy is an allocation {(kjt , cjt , ijt)j∈[0,1], (Km
t , L

m
t )m∈[0,Mt]}∞t=0,

a distribution of proÞts {(πjt)j∈[0,1]}, and a price path {rt, wt}∞t=0 such that
(i) Given {rt, wt}∞t=0 and {πjt}∞t=0, the path {kjt , cjt , ijt} is consistent with the behavior of

household j, for every j.

(ii) (Km
t , L

m
t ) maximizes Þrm proÞts, for every m and t.

(iii) The capital and labor markets clear in every period

(iv) Aggregate dividends equal aggregate proÞts.

2.2.5 General Equilibrium: Existence, Uniqueness, and Charac-

terization

� In the next, we characterize the decentralized equilibrium allocations:

Proposition 5 For any initial positions (kj0)j∈[0,1], an equilibrium exists. The allocation of

production across Þrms is indeterminate, but the equilibrium is unique as regards aggregate
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and household allocations. The capital-labor ratio in the economy is given by {kt}∞t=0 such
that

kt+1 = G(kt) (2.29)

for all t ≥ 0 and k0 =
R
kj0dj historically given, where G(k) ≡ sf(k)+(1−δ−n)k. Equilibrium

growth is given by

γt ≡
kt+1 − kt
kt

= γ(kt), (2.30)

where γ(k) ≡ sφ(k)− (δ + n), φ(k) ≡ f(k)/k. Finally, equilibrium prices are given by

rt = r(kt) ≡ f 0(kt), (2.31)

wt = w(kt) ≡ f(kt)− f 0(kt)kt, (2.32)

where r0(k) < 0 < w0(k).

Proof. We Þrst characterize the equilibrium, assuming it exists.

Using Km
t = XtL

m
t by (2.24), we can write the aggregate demand for capital asZ Mt

0

Km
t dm = Xt

Z Mt

0

Lmt dm

From the labor market clearing condition (2.28),Z Mt

0

Lmt dm = Lt.

Combining, we infer Z Mt

0

Km
t dm = XtLt,

and substituting in the capital market clearing condition (2.27), we conclude

XtLt = Kt,
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where Kt ≡
R Lt
0
kjtdj denotes the aggregate capital stock. Equivalently, letting kt ≡ Kt/Lt

denote the capital-labor ratio in the economy, we have

Xt = kt. (2.33)

That is, all Þrms use the same capital-labor ratio as the aggregate of the economy.

Substituting (2.33) into (2.22) and (2.23) we infer that equilibrium prices are given by

rt = r(kt) ≡ f 0(kt) = FK(kt, 1)
wt = w(kt) ≡ f(kt)− f 0(kt)kt = FL(kt, 1)

Note that r0(k) = f 00(k) = FKK < 0 and w0(k) = −f 00(k)k = FLK > 0. That is, the interest
rate is a decreasing function of the capital-labor ratio and the wage rate is an increasing

function of the capital-labor ratio. The Þrst properties reßects diminishing returns, the

second reßects the complementarity of capital and labor.

Adding up the budget constraints of the households, we get

Ct + It = rtKt + wtLt +

Z
πjtdj,

where Ct ≡
R
cjtdj and It ≡

R
ijtdj. Aggregate dividends must equal aggregate proÞts,R

πjtdj =
R
Πmt dj. By (2.26), proÞts for each Þrm are zero. Therefore,

R
πjtdj = 0, implying

Ct + It = Yt = rtKt + wtLt

Equivalently, in per-capita terms,

ct + it = yt = rtkt + wt.

From (2.25) and (2.33), or equivalently from (2.31) and (2.32),

rtkt + wt = yt = f(kt)
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We conclude that the household budgets imply

ct + it = f(kt),

which is simply the resource constraint of the economy.

Adding up the individual capital accumulation rules (2.16), we get the capital accumu-

lation rule for the aggregate of the economy. In per-capita terms,

kt+1 = (1− δ − n)kt + it

Adding up (2.19) across household, we similarly infer

it = syt = sf(kt).

Combining, we conclude

kt+1 = sf(kt) + (1− δ − n)kt = G(kt),

which is exactly the same as in the centralized allocation.

Finally, existence and uniqueness is now trivial. (2.29) maps any kt ∈ (0,∞) to a unique
kt+1 ∈ (0,∞). Similarly, (2.31) and (2.32) map any kt ∈ (0,∞) to unique rt, wt ∈ (0,∞).
Therefore, given any initial k0 =

R
kj0dj, there exist unique paths {kt}∞t=0 and {rt, wt}∞t=0.

Given {rt, wt}∞t=0, the allocation {kjt , cjt , ijt} for any household j is then uniquely determined
by (2.16), (2.17), and (2.19). Finally, any allocation (Km

t , L
m
t )m∈[0,Mt] of production across

Þrms in period t is consistent with equilibrium as long as Km
t = ktL

m
t . QED

� An immediate implication is that the decentralized market economy and the centralized
dictatorial economy are isomorphic:

Proposition 6 The aggregate and per-capita allocations in the competitive market economy

coincide with those in the dictatorial economy.
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Proof. Follows directly from the fact that G is the same under both regimes, provided of

course that (s, δ, n, f) are the same. QED

� Given this isomorphism, we can immediately translate the steady state and the tran-
sitional dynamics of the centralized plan to the steady state and the transitional dy-

namics of the decentralized market allocations:

Corollary 7 Suppose δ + n ∈ (0, 1) and s ∈ (0, 1). A steady state (c∗, k∗) ∈ (0,∞)2 for the
competitive economy exists and is unique, and coincides with that of the social planner. k∗

and y∗ increase with s and decrease with δ and n, whereas c∗ is non-monotonic with s and

decreases with δ and n. Finally, y∗/k∗ = (δ + n)/s.

Corollary 8 Given any initial k0 ∈ (0,∞), the competitive economy converges asymptoti-
cally to the steady state. The transition is monotonic. The equilibrium growth rate is positive

and decreases over time towards zero if k0 < k∗; it is negative and increases over time towards

zero if k0 > k∗.

2.3 Shocks and Policies

� The Solow model can be interpreted also as a primitive RBC model. We can use the
model to predict the response of the economy to productivity or taste shocks, or to

shocks in government policies.

2.3.1 Productivity and Taste Shock

� Productivity shocks: Consider a positive (negative) shock in productivity, either tem-
porary or permanent. The γ(k) function shifts up (down), either termporarly or per-
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manently. What are the effects on the steady state and the transitional dynamics, in

either case?

� Taste shocks: Consider a temporary fall in the saving rate. The γ(k) function shifts
down for a while, and then return to its initial position. What the transitional dynam-

ics?

2.3.2 Unproductive Government Spending

� Let us now introduce a government in the competitive market economy. The govern-
ment spends resources without contributing to production or capital accumulation.

� The resource constraint of the economy now becomes

ct + gt + it = yt = f(kt),

where gt denotes government consumption. It follows that the dynamics of capital are

given by

kt+1 − kt = f(kt)− (δ + n)kt − ct − gt

� Government spending is Þnanced with proportional income taxation, at rate τ ≥ 0.

The government thus absorbs a fraction τ of aggregate output:

gt = τyt.

� Disposable income for the representative household is (1−τ )yt.We continue to assume
that consumption and investment absorb fractions 1− s and s of disposable income:

ct = (1− s)(1− τ)yt.
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� Combining the above, we conclude that the dynamics of capital are now given by

γt =
kt+1 − kt
kt

= s(1− τ)φ(kt)− (δ + n).

where φ(k) ≡ f(k)/k. Given s and kt, the growth rate γt decreases with τ .

� A steady state exists for any τ ∈ [0, 1) and is given by

k∗ = φ−1
µ
δ + n

s(1− τ )
¶
.

Given s, k∗ decreases with τ .

� Policy Shocks: Consider a temporary shock in government consumption. What are the
transitional dynamics?

2.3.3 Productive Government Spending

� Suppose now that production is given by

yt = f(kt, gt) = k
α
t g

β
t ,

where α > 0, β > 0, and α + β < 1. Government spending can thus be interpreted as

infrastructure or other productive services. The resource constraint is

ct + gt + it = yt = f(kt, gt).

� We assume again that government spending is Þnanced with proportional income tax-
ation at rate τ , and that private consumption and investment are fractions 1− s and
s of disposable household income:

gt = τyt.

ct = (1− s)(1− τ )yt
it = s(1− τ)yt
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� Substituting gt = τyt into yt = kαt gβt and solving for yt, we infer

yt = k
α

1−β
t τ

β
1−β ≡ kat τ b

where a ≡ α/(1−β) and b ≡ β/(1−β). Note that a > α, reßecting the complementarity
between government spending and capital.

� We conclude that the growth rate is given by

γt =
kt+1 − kt
kt

= s(1− τ)τ bka−1t − (δ + n).

The steady state is

k∗ =
µ
s(1− τ )τ b
δ + n

¶1/(1−a)
.

� Consider the rate τ that maximizes either k∗, or γt for any given kt. This is given by
d

dτ
[(1− τ)τ b] = 0⇔

bτ b−1 − (1 + b)τ b = 0⇔
τ = b/(1 + b) = β.

That is, the �optimal� τ equals the elasticity of production with respect to govern-

ment services. The more productive government services are, the higher their optimal

provision.

2.4 Continuous Time and Conditional Convergence

2.4.1 The Solow Model in Continuous Time

� Recall that the basic growth equation in the discrete-time Solow model is
kt+1 − kt
kt

= γ(kt) ≡ sφ(kt)− (δ + n).
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We would expect a similar condition to hold under continuous time. We verify this

below.

� The resource constraint of the economy is

C + I = Y = F (K,L).

In per-capita terms,

c+ i = y = f(k).

� Population growth is now given by
úL

L
= n

and the law of motion for aggregate capital is

úK = I − δK

� Let k ≡ K/L. Then,
úk

k
=

úK

K
−
úL

L
.

Substituting from the above, we infer

úk = i− (δ + n)k.

Combining this with

i = sy = sf(k),

we conclude

úk = sf(k)− (δ + n)k.
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� Equivalently, the growth rate of the economy is given by
úk

k
= γ(k) ≡ sφ(k)− (δ + n). (2.34)

The function γ(k) thus gives the growth rate of the economy in the Solow model,

whether time is discrete or continuous.

2.4.2 Log-linearization and the Convergence Rate

� DeÞne z ≡ ln k − ln k∗. We can rewrite the growth equation (2.34) as

úz = Γ(z),

where

Γ(z) ≡ γ(k∗ez) ≡ sφ(k∗ez)− (δ + n)

Note that Γ(z) is deÞned for all z ∈ R. By deÞnition of k∗, Γ(0) = sφ(k∗)− (δ + n) =
0. Similarly, Γ(z) > 0 for all z < 0 and Γ(z) < 0 for all z > 0. Finally, Γ0(z) =

sφ0(k∗ez)k∗ez < 0 for all z ∈ R.

� We next (log)linearize úz = Γ(z) around z = 0 :

úz = Γ(0) + Γ0(0) · z

or equivalently

úz = λz

where we substituted Γ(0) = 0 and let λ ≡ Γ0(0).
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� Straightforward algebra gives

Γ0(z) = sφ0(k∗ez)k∗ez < 0

φ0(k) =
f 0(k)k − f(k)

k2
= −

·
1− f

0(k)k
f(k)

¸
f(k)

k2

sf(k∗) = (δ + n)k∗

We infer

Γ0(0) = −(1− εK)(δ + n) < 0

where εK ≡ FKK/F = f 0(k)k/f(k) is the elasticity of production with respect to

capital, evaluated at the steady-state k.

� We conclude that
úk

k
= λ ln

µ
k

k∗

¶
where

λ = −(1− εK)(δ + n) < 0

The quantity −λ is called the convergence rate.

� Note that, around the steady state

úy

y
= εK ·

úk

k

and
y

y∗
= εK · k

k∗

It follows that
úy

y
= λ ln

µ
y

y∗

¶
Thus, −λ is the convergence rate for either capital or output.
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� In the Cobb-Douglas case, y = kα, the convergence rate is simply

−λ = (1− α)(δ + n),

where α is the income share of capital. Note that as λ → 0 as α → 1. That is,

convergence becomes slower and slower as the income share of capital becomes closer

and closer to 1. Indeed, if it were α = 1, the economy would a balanced growth path.

� In the example with productive government spending, y = kαgβ = kα/(1−β)τβ/(1−β), we
get

−λ =
µ
1− α

1− β
¶
(δ + n)

The convergence rate thus decreases with β, the productivity of government services.

And λ→ 0 as β → 1− α.

� Calibration: If α = 35%, n = 3% (= 1% population growth+2% exogenous technolog-

ical process), and δ = 5%, then −λ = 6%. This contradicts the data. But if α = 70%,
then −λ = 2.4%, which matches the date.

2.5 Cross-Country Differences and Conditional Con-

vergence.

2.5.1 Mankiw-Romer-Weil: Cross-Country Differences

� The Solow model implies that steady-state capital, productivity, and income are deter-
mined primarily by technology (f and δ), the national saving rate (s), and population

growth (n).
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� Suppose that countries share the same technology in the long run, but differ in terms
of saving behavior and fertility rates. If the Solow model is correct, observed cross-

country income and productivity differences should be explained by observed cross-

country differences in s and n,

� Mankiw, Romer and Weil tests this hypothesis against the data. In it�s simple form,
the Solow model fails to explain the large cross-country dispersion of income and pro-

ductivity levels.

� Mankiw, Romer and Weil then consider an extension of the Solow model, that includes
two types of capital, physical capital (k) and human capital (h). Output is given by

y = kαhβ,

where α > 0, β > 0, and α + β < 1. The dynamics of capital accumulation are now

given by

úk = sky − (δ + n)k
úh = shy − (δ + n)h

where sk and sh are the investment rates in physical capital and human capital, re-

spectively. The steady-state levels of k, h, and y then depend on both sk and sh, as

well as δ and n.

� Proxying sh by education attainment levels in each country, Mankiw, Romer and Weil
Þnd that the Solow model extended for human capital does a pretty good job in ex-

plaining the cross-country dispersion of output and productivity levels.
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2.5.2 Barro: Conditional Convergence

� Recall the log-linearization of the dynamics around the steady state:

úy

y
= λ ln

y

y∗
.

A similar relation will hold true in the neoclassical growth model a la Ramsey-Cass-

Koopmans. λ < 0 reßects local diminishing returns. Such local diminishing returns

occur even in endogenous-growth models. The above thus extends well beyond the

simple Solow model.

� Rewrite the above as
∆ ln y = λ ln y − λ ln y∗

Next, let us proxy the steady state output by a set of country-speciÞc controls X,

which include s, δ, n, τ etc. That is, let

−λ ln y∗ ≈ β 0X.

We conclude

∆ ln y = λ ln y + β0X + error

� The above represents a typical �Barro� conditional-convergence regression: We use
cross-country data to estimate λ (the convergence rate), together with β (the effects

of the saving rate, education, population growth, policies, etc.) The estimated conver-

gence rate is about 2% per year.

� Discuss the effects of the other variables (X).
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2.6 Miscellaneous

2.6.1 The Golden Rule and Dynamic Inefficiency

� The Golden Rule: Consumption at the steady state is given by

c∗ = (1− s)f(k∗) =
= f(k∗)− (δ + n)k∗

Suppose the social planner chooses s so as to maximize c∗. Since k∗ is a monotonic

function of s, this is equivalent to choosing k∗ so as to maximize c∗. Note that

c∗ = f(k∗)− (δ + n)k∗

is strictly concave in k∗. The FOC is thus both necessary and sufficient. c∗ is thus

maximized if and only if k∗ = kgold, where kgold solve

f 0(kgold)− δ = n.

Equivalently, s = sgold, where sgold solves

sgold · φ (kgold) = (δ + n)

The above is called the �golden rule� for savings, after Phelps.

� Dynamic Inefficiency: If s > sgold (equivalently, k∗ > kgold), the economy is dynami-
cally inefficient: If the saving raised is lowered to s = sgold for all t, then consumption

in all periods will be higher!

� On the other hand, if s < sgold (equivalently, k∗ > kgold), then raising s towards sgold
will increase consumption in the long run, but at the cost of lower consumption in the
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short run. Whether such a trade-off between short-run and long-run consumption is

desirable will depend on how the social planner weight the short run versus the long

run.

� The ModiÞed Golden Rule: In the Ramsey model, this trade-off will be resolved when
k∗ satisÞes the

f 0(k∗)− δ = n+ ρ,

where ρ > 0 measures impatience (ρ will be called �the discount rate�). The above is

called the �modiÞed golden rule.� Naturally, the distance between the Ramsey-optimal

k∗ and the golden-rule kgold increase with ρ.

� Abel et. al.: Note that the golden rule can be restated as

r − δ =
úY

Y
.

Dynamic inefficiency occurs when r−δ < úY /Y, dynamic efficiency is ensured if r−δ >
úY /Y. Abel et al. use this relation to argue that, in reality, there is no evidence of

dynamic inefficiency.

� Bubbles: If the economy is dynamically inefficient, there is room for bubbles.

2.6.2 Poverty Traps, Cycles, etc.

� Discuss the case of a general non-concave or non-monotonic G.

� Multiple steady states; unstable versus stable ones; poverty traps.

� Local versus global stability; local convergence rate.

� Oscillating dynamics; perpetual cycles.
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2.6.3 Introducing Endogenous Growth

� What ensures that the growth rate asymptotes to zero in the Solow model (and the
Ramsey model as well) is the vanishing marginal product of capital, that is, the Inada

condition limk→∞ f 0(k) = 0.

� Continue to assume that f 00(k) < 0, so that γ 0(k) < 0, but assume now that limk→∞ f 0(k) =
A > 0. This implies also limk→∞ φ(k) = A. Then, as k →∞,

γt ≡
kt+1 − kt
kt

→ sA− (n+ δ)

� If sA < (n+δ), then it is like before: The economy converges to k∗ such that γ(k∗) = 0.
But if sA > (n + x + δ), then the economy exhibits deminishing but not vanishing

growth: γt falls with t, but γt → sA− (n+ δ) > 0 as t→∞.

� Jones and Manuelli consider such a general convex technology: e.g., f(k) = Bkα+Ak.
We then get both transitional dynamics in the short run and perpetual growth in the

long run.

� In case that f(k) = Ak, the economy follows a balanced-growth path from the very

beginning.

� We will later �endogenize� A in terms of policies, institutions, markets, etc.

� For example, Romer/Lucas: If we have human capital or spillover effects,

y = Akαh1−α

and h = k, then we get y = Ak.
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� Reconcile conditional convergence with endogenous growth. Think of ln k − ln k∗ as a
detrended measure of the steady-state allocation of resources (human versus physical

capital, specialization pattern.); or as a measure of distance from technology frontier;

etc.
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Chapter 3

The Neoclassical Growth Model

� In the Solow model, agents in the economy (or the dictator) follow a simplistic linear
rule for consumption and investment. In the Ramsey model, agents (or the dictator)

choose consumption and investment optimally so as to maximize their individual utility

(or social welfare).

3.1 The Social Planner

� In this section, we start the analysis of the neoclassical growth model by considering
the optimal plan of a benevolent social planner, who chooses the static and intertem-

poral allocation of resources in the economy so as to maximize social welfare. We

will later show that the allocations that prevail in a decentralized competitive market

environment coincide with the allocations dictated by the social planner.

� Together with consumption and saving, we also endogenize labor supply.
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3.1.1 Preferences

� Preferences are deÞned over streams of consumption and leisure {xt}∞t=0, where xt =
(ct, zt), and are represented by a utility function U : X∞ → R, where X is the domain

of xt, such that

U ({xt}∞t=0) = U (x0, x1, ...)

� We say that preferences are recursive if there is a function W : X×R → R such that,

for all {xt}∞t=0,
U (x0, x1, ...) = W [x0,U (x1, x2, ...)]

We can then represent preferences as follows: A consumption-leisure stream {xt}∞t=0
induces a utility stream {Ut}∞t=0 according to the recursion

Ut = W (xt,Ut+1).

That is, utility in period t is given as a function of consumption in period t and utility

in period t+1. W is called a utility aggregator. Finally, note that recursive preferences,

as deÞned above, are both time-consistent and stationary.

� We say that preferences are additively separable if there are functions υt : X → R such

that

U ({xt}∞t=0) =
∞X
t=0

υt(xt).

We then interpret υt(xt) as the utility enjoyed in period 0 from consumption in period

t+ 1.

� Throughout our analysis, we will assume that preferences are both recursive and addi-
tively separable. In other words, we impose that the utility aggregator W is linear in
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ut+1 : There is a function U : R → R and a scalar β ∈ R such thatW (x, u) = U(x)+βu.

We can thus represent preferences in recursive form as

Ut = U(xt) + βUt+1.

Alternatively,

Ut =
∞X
τ=0

βτU(xt+τ )

� β is called the discount factor. For preferences to be well deÞned (that is, for the
inÞnite sum to converge) we need β ∈ (−1,+1). Monotonicity of preferences imposes
β > 0. Therefore, we restrict β ∈ (0, 1). The discount rate is given by ρ such that
β = 1/(1 + ρ).

� U is sometimes called the per-period felicity or utility function. We let z > 0 denote
the maximal amount of time per period. We accordingly let X = R+× [0, z].We Þnally
impose that U is neoclassical, in that it satisÞes the following properties:

1. U is continuous and, although not always necessary, twice differentiable.

2. U is strictly increasing and strictly concave:

Uc(c, z) > 0 > Ucc(c, z)

Uz(c, z) > 0 > Uzz(c, z)

U2cz < UccUzz

3. U satisÞes the Inada conditions

lim
c→0

Uc = ∞ and lim
c→∞

Uc = 0.

lim
z→0

Uz = ∞ and lim
z→z

Uz = 0.
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3.1.2 Technology and the Resource Constraint

� We abstract from population growth and exogenous technological change.

� The time constraint is given by
zt + lt ≤ z.

We usually normalize z = 1 and thus interpret zt and lt as the fraction of time that is

devoted to leisure and production, respectively.

� The resource constraint is given by

ct + it ≤ yt

� Let F (K,L) be a neoclassical technology and let f(κ) = F (κ, 1) be the intensive form
of F. Output in the economy is given by

yt = F (kt, lt) = ltf(κt),

where

κt =
kt
lt

is the capital-labor ratio.

� Capital accumulates according to

kt+1 = (1− δ)kt + it.

(Alternatively, interpret l as effective labor and δ as the effective depreciation rate.)

� Finally, we impose the following natural non-negativitly constraints:

ct ≥ 0, zt ≥ 0, lt ≥ 0, kt ≥ 0.
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� Combining the above, we can rewrite the resource constraint as

ct + kt+1 ≤ F (kt, lt) + (1− δ)kt,

and the time constraint as

zt = 1− lt,

with

ct ≥ 0, lt ∈ [0, 1], kt ≥ 0.

3.1.3 The Ramsey Problem

� The social planner chooses a plan {ct, lt, kt+1}∞t=0 so as to maximize utility subject to
the resource constraint of the economy, taking initial k0 as given:

maxU0 =
∞X
t=0

βtU(ct, 1− lt)

ct + kt+1 ≤ (1− δ)kt + F (kt, lt), ∀t ≥ 0,
ct ≥ 0, lt ∈ [0, 1], kt+1 ≥ 0., ∀t ≥ 0,

k0 > 0 given.

3.1.4 Optimal Control

� Let µt denote the Lagrange multiplier for the resource constraint. The Lagrangian of
the social planner�s problem is

L0 =
∞X
t=0

βtU(ct, 1− lt) +
∞X
t=0

µt [(1− δ)kt + F (kt, lt)− kt+1 − ct]
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� DeÞne λt ≡ βtµt and

Ht ≡ H(kt, kt+1, ct, lt, λt) ≡
≡ U(ct, 1− lt) + λt [(1− δ)kt + F (kt, lt)− kt+1 − ct]

H is called the Hamiltonian of the problem.

� We can rewrite the Lagrangian as

L0 =
∞X
t=0

βt {U(ct, 1− lt) + λt [(1− δ)kt + F (kt, lt)− kt+1 − ct]} =

=
∞X
t=0

βtHt

or, in recursive form

Lt = Ht + βLt+1.

� Given kt, ct and lt enter only the period t utility and resource constraint; (ct, lt) thus
appears only in Ht. Similarly, kt,enter only the period t and t+ 1 utility and resource

constraints; they thus appear only in Ht and Ht+1. Therefore,

Lemma 9 If {ct, lt, kt+1}∞t=0 is the optimum and {λt}∞t=0 the associated multipliers, then

(ct, lt) = argmax
c,l

Htz }| {
H(kt, kt+1, c, l, λt)

taking (kt, kt+1) as given, and

kt+1 = argmax
k0

Ht + β Ht+1z }| {
H(kt, k

0, ct, lt, λt) + βH(k0, kt+2, ct+1, lt+1, λt+1)

taking (kt, kt+2) as given.
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Equivalently,

(ct, lt, kt+1, ct+1, lt+1, ) = arg max
c,l,k0,c0,l0

[U(c, l) + βU(c0, l0)]

s.t. c+ k0 ≤ (1− δ)kt + F (kt, l)
c0 + kt+2 ≤ (1− δ)k0 + F (k0, l0)

taking (kt, kt+2) as given.

� We henceforth assume an interior solution. As long as kt > 0, interior solution is indeed
ensured by the Inada conditions on F and U.

� The FOC with respect to ct gives
∂L0
∂ct

= βt
∂Ht
∂ct

= 0⇔
∂Ht
∂ct

= 0⇔

Uc(ct, zt) = λt

The FOC with respect to lt gives

∂L0
∂lt

= βt
∂Ht
∂lt

= 0⇔
∂Ht
∂lt

= 0⇔

Uz(ct, zt) = λtFL(kt, lt)

Finally, the FOC with respect to kt+1 gives

∂L0
∂kt+1

= βt
·
∂Ht
∂kt+1

+ β
∂Ht+1
∂kt+1

¸
= 0⇔

−λt + β∂Ht+1
∂kt+1

= 0⇔

λt = β [1− δ + FK(kt+1, lt+1)]λt+1
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� Combining the above, we get
Uz(ct, zt)

Uc(ct, zt)
= FL(kt, lt)

and
Uc(ct, zt)

βUc(ct+1, zt+1)
= 1− δ + FK(kt+1, lt+1).

� Both conditions impose equality between marginal rates of substitution and marginal
rate of transformation. The Þrst condition means that the marginal rate of substitution

between consumption and leisure equals the marginal product of labor. The second

condition means that the marginal rate of intertemporal substitution in consumption

equals the marginal capital of capital net of depreciation (plus one). This last condition

is called the Euler condition.

� The envelope condition for the Pareto problem is

∂(maxU0)
∂k0

=
∂L0
∂k0

= λ0 = Uc(c0, z0).

More generally,

λt = Uc(ct, lt)

represents the marginal utility of capital in period t and will equal the slope of the

value function at k = kt in the dynamic-programming representation of the problem.

� Suppose for a moment that the horizon was Þnite, T <∞. Then, the Lagrangian would
be

L0 =
TX
t=0

βtHt

and the Kuhn-Tucker condition with respect to kT+1 would give

∂L
∂kT+1

= βT
∂HT
∂kT+1

≥ 0 and kT+1 ≥ 0, with complementary slackness;
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equivalently

µT = β
TλT ≥ 0 and kT+1 ≥ 0, with βTλTkT+1 = 0.

The latter means that either kT+1 = 0, or otherwise it better be that the shadow value

of kT+1 is zero. When the horizon is inÞnite, the terminal condition β
TλTkT+1 = 0 is

replaced by the transversality condition

lim
t→∞

βtλtkt+1 = 0.

Equivalently, using λt = Uc(ct, zt), we write the transversality condition as

lim
t→∞

βtUc(ct, zt)kt+1 = 0.

The above means that, as time passes, the (discounted) shadow value of capital con-

verges to zero.

� We conclude:

Proposition 10 The plan {ct, lt, kt}∞t=0 is a solution to the social planner�s problem if and

only if

Uz(ct, zt)

Uc(ct, zt)
= FL(kt, lt), (3.1)

Uc(ct, zt)

βUc(ct+1, zt+1)
= 1− δ + FK(kt+1, lt+1), (3.2)

kt+1 = F (kt, lt) + (1− δ)kt − ct, (3.3)

for all t ≥ 0, and
k0 > 0 given, and lim

t→∞
βtUc(ct, zt)kt+1 = 0. (3.4)
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� Remark: We proved necessity of (3.1) and (3.2) essentially by a perturbation argument,
and (3.3) is trivial. We did not prove necessity of (3.4), neither sufficiency of this

set of conditions. One can prove both necessity and sufficiency using optimal-control

techniques. Alternatively, we can use dynamic programming; the proof of the necessity

and sufficiency of the Euler and transversality conditions is provided in Stokey and

Lucas.

� Note that the (3.1) can be solved for We will later prove that

3.1.5 Dynamic Programing

Consider again the social planner�s problem.

For any k > 0, deÞne

V (k) ≡ max
∞X
t=0

βtU(ct, 1− lt)

subject to

ct + kt+1 ≤ (1− δ)kt + F (kt, lt), ∀t ≥ 0,

ct, lt, (1− lt), kt+1 ≥ 0, ∀t ≥ 0,

k0 = k given.

V is called the Value Function.

� DeÞne k by the unique solution to

k = (1− δ)k + F (k, 1)

and note that k represents an upper bound on the level of capital that can be sustained

in any steady state. Without serious loss of generality, we will henceforth restrict

kt ∈ [0, k].
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� Let B be the set of continuous and bounded functions v : [0, k]→ R and consider the

mapping T : B → B deÞned as follows:

T v(k) = maxU(c, 1− l) + βv(k0)
s.t. c+ k0 ≤ (1− δ)k + F (k, l)
k0 ∈ [0, k], c ∈ [0, F (k, 1)], l ∈ [0, 1].

The conditions we have imposed on U and F imply that T is a contraction mapping. It
follows that T has a unique Þxed point V = T V and this Þxed point gives the solution
to the planner�s problem:

Proposition 11 There is a unique V that solves the Bellman equation

V (k) = maxU(c, 1− l) + βV (k0)
s.t. c+ k0 ≤ (1− δ)k + F (k, l)
k0 ∈ [0, k], c ∈ [0, F (k, 1)], l ∈ [0, 1].

V is continuous, differentiable, and strictly concave. V (k0) gives the solution for the social

planner�s problem.

Proposition 12 Let

[c(k), l(k), G(k)] = argmax{...}.

c(k), l(k), G(k) are continuous; c(k) and G(k) are increasing. The plan {ct, lt, kt}∞t=0 is opti-
mal if and only if it satisÞes

ct = c(kt)

lt = l(kt)

kt+1 = G(kt)
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with k0 historically given.

� Remark: The proofs of the above propositions, as well as the proof of the necessity
and sufficiency of the Euler and transversality conditions, are provided in Stokey and

Lucas. Because of time constraints, I will skip these proofs and concentrate on the

characterization of the optimal plan.

� The Lagrangian for the DP problem is

L = U(c, 1− l) + βV (k0) + λ[(1− δ)k + F (k, l)− k0 − c]

The FOCs with respect to c, l and k0 give

∂L
∂c

= 0⇔ Uc(c, z) = λ

∂L
∂l

= 0⇔ Uz(c, z) = λFL(k, l)

∂L
∂k0

= 0⇔ λ = βVk(k
0)

The Envelope condition is

Vk(k) =
∂L
∂k

= λ[1− δ + FK(k, l)]

� Combining, we conclude
Uz(ct, lt)

Uc(ct, lt)
= Fl(kt, kt)

and
Uc(ct, lt)

Uc(ct+1, lt+1)
= β [1− δ + FK(kt+1, lt+1)] ,

which are the same conditions we had derived with optimal control. Finally, note that

we can state the Euler condition alternatively as

Vk(kt)

Vk(kt+1)
= β[1− δ + FK(kt+1, lt+1)].
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3.2 Decentralized Competitive Equilibrium

3.2.1 Households

� Households are indexed by j ∈ [0, 1]. There is one person per household and no popu-
lation growth.

� The preferences of household j are given by

U j0 =
∞X
t=0

βtU(cjt , z
j
t )

In recursive form,

U jt = U(cjt , zjt ) + βU jt+1

� The time constraint for household j can be written as

zjt = 1− ljt .

� The budget constraint of household j is given by

cjt + i
j
t + x

j
t ≤ yjt = rtkjt +Rtbjt + wtljt + αjΠt,

where rt denotes the rental rate of capital, wt denotes the wage rate, Rt denotes the

interest rate on risk-free bonds. Household j accumulates capital according to

kjt+1 = (1− δ)kjt + ijt
and bonds according to

bjt+1 = b
j
t + x

j
t

In equilibrium, Þrm proÞts are zero, because of CRS. It follows that Πt = 0 and we

can rewrite the household budget as

cjt + k
j
t+1 + b

j
t+1 ≤ (1− δ + rt)kjt + (1 +Rt)bjt + wtljt .
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� The natural non-negativity constraint

kjt+1 ≥ 0

is imposed on capital holdings, but no short-sale constraint is imposed on bond hold-

ings. That is, household can either lend or borrow in risk-free bonds. We only impose

the following natural borrowing limit

−(1 +Rt+1)bjt+1 ≤ (1− δ + rt+1)kjt+1 +
∞X

τ=t+1

qτ
qt+1

wτ .

where

qt ≡ 1

(1 +R0)(1 +R1)...(1 +Rt)
= (1 +Rt)qt+1.

This constraint simply requires that the net debt position of the household does not

exceed the present value of the labor income he can attain by working all time.

� Note that simple arbitrage between bonds and capital implies that, in any equilibrium,

Rt = rt − δ.

That is, the interest rate on riskless bonds must equal the rental rate of capital net

of depreciation. If Rt < rt − δ, all individuals would like to short-sell bonds (up to
their borrowing constraint) and invest into capital. If Rt > rt − δ, capital would be
dominated by bonds, and nobody in the economy would invest in capital. In the Þrst

case, there would be excess supply for bonds in the aggregate. In the second case, there

would be excess demand for bonds and no investment in the aggregate. In equilibrium,

Rt and rt must adjust so that Rt = rt − δ.

� Provided that Rt = rt−δ, the household is indifferent between bonds and capital. The
�portfolio� choice between kjt and b

j
t is thus indeterminate. What is pinned down is
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only the total asset position, ajt = b
j
t + k

j
t . The budget constraint then reduces to

cjt + a
j
t+1 ≤ (1 +Rt)ajt + wtljt ,

and the natural borrowing constraint then becomes

ajt+1 ≥ at+1,

where

at+1 ≡ −
1

qt

∞X
τ=t+1

qτwτ

� Note that at is bounded away from −∞ as long as qt is bounded away from 0 andP∞
τ=t qτwτ is bounded away from +∞. IfP∞

τ=t+1 qτwτ was inÞnite at any t, the agent

could attain inÞnite consumption in every period τ ≥ t+ 1. That this is not the case
is ensured by the restriction that

∞X
t=0

qtwt < +∞.

� Given a price sequence {Rt, wt}∞t=0, household j chooses a plan {cjt , ljt , kjt+1}∞t=0 so as to
maximize lifetime utility subject to its budget constraints

max U j0 =
∞X
t=0

βtU(cjt , 1− ljt )

s.t. cjt + a
j
t+1 ≤ (1 +Rt)ajt + wtljt

cjt ≥ 0, ljt ∈ [0, 1], ajt+1 ≥ at+1

� Let µjt = βtλjt be the Lagrange multiplier for the budget constraint, we can write the
Lagrangian as

Lj0 =
∞X
t=0

βt
©
U(cjt , 1− ljt ) + λjt

£
(1 +Rt)a

j
t + wtl

j
t − ajt+1 − cjt

¤ª
=

∞X
t=0

βtHj
t
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where

Hj
t = U(c

j
t , 1− ljt ) + λjt

£
(1 +Rt)a

j
t + wtl

j
t − ajt+1 − cjt

¤
� The FOC with respect to cjt gives

∂Lj0
∂cjt

= βt
∂Hj

t

∂cjt
= 0⇔

Uc(c
j
t , z

j
t ) = λ

j
t

The FOC with respect to ljt gives

∂Lj0
∂ljt

= βt
∂Hj

t

∂ljt
= 0⇔

Uz(c
j
t , z

j
t ) = λ

j
twt

Combining, we get
Uz(c

j
t , z

j
t )

Uc(c
j
t , z

j
t )
= wt.

That is, households equate their marginal rate of substitution between consumption

and leisure with the (common) wage rate.

� The Kuhn-Tucker condition with respect to ajt+1 gives

∂Lj0
∂ajt+1

= βt

"
∂Hj

t

∂ajt+1
+ β

∂Hj
t+1

∂ajt+1

#
≤ 0⇔

λjt ≥ β [1 +Rt]λjt+1,

with equality whenever ajt+1 > at+1. That is, the complementary slackness condition is

£
λjt − β [1 +Rt]λjt+1

¤ £
ajt+1 − at+1

¤
= 0.
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� Finally, if time was Þnite, the terminal condition would be

µjT ≥ 0, ajT+1 ≥ aT+1, µjT
£
ajT+1 − aT+1

¤
= 0,

where µjt ≡ βtλjt . Now that time is inÞnite, the transversality condition is

lim
t→0

βtλjt
£
ajt+1 − at+1

¤
= 0.

� Using λjt = Uc(cjt , zjt ), we can restate the Euler condition as

Uc(c
j
t , z

j
t ) ≥ β[1 +Rt]Uc(cjt+1, zjt+1),

with equality whenever ajt+1 > at+1. That is, as long as the borrowing constraint does

not bind, households equate their marginal rate of intertemporal substitution with the

(common) return on capital. On the other hand, if the borrowing constraint is binding,

the marginal utility of consumption today may exceed the marginal beneÞt of savings:

The household would like to borrow, but it�s not capable of.

� For general borrowing limit at, there is nothing to ensure that the Euler condition
must be satisÞed with equality. For example, if we had speciÞed at = 0, it likely the

borrowing constraint will bind, especially if β(1+Rt) < 1 and wt is low as compared to

its long-run mean. But if at is the natural borrowing limit, and the utility satisÞes the

Inada condition Uc →∞ as c→ 0, then a simple argument ensures that the borrowing

constraint can never bind: Suppose that at+1 = at+1. Then c
j
τ = z

j
τ = 0 for all τ ≥ t,

implying Uc(c
j
t+1, z

j
t+1) = ∞ and therefore necessarily Uc(c

j
t , z

j
t ) < β[1 + Rt]Uc(c

j
t , z

j
t ),

unless cjt = 0 which would be optimal only if at = at. Therefore, unless a0 = a0 to start

with, the borrowing which would contradict the Euler condition. Therefore, at > at at

all dates, and the Euler condition is satisÞed with equality:
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� Moreover, if the borrowing constraint never binds, iterating λjt = β [1 +Rt]λjt+1 implies

βtλjt = qtλ
j
0.

We can therefore rewrite the transversality as

lim
t→∞

βtλjta
j
t+1 = lim

t→∞
βtλjtat+1 = λ

j
0 lim
t→∞

qtat+1

But note that

qtat+1 =
∞X
τ=t

qτwτ

and
P∞

τ=0 qτwτ < ∞ implies
P∞

τ=t qτwτ = 0. Therefore, the transversality condition

reduces to

lim
t→∞

βtλjta
j
t+1 = 0

Equivalently,

lim
t→∞

βtUc(c
j
t , z

j
t )a

j
t+1 = 0.

� It is useful to restate the household problem in a �static� format (that�s essentially

assuming complete Arrow-Debreu markets). As long as the borrowing constraint does

not bind and the Inada conditions hold, we can rewrite the household problem as

max

∞X
t=0

βtU(cjt , z
j
t )

s.t.
∞X
t=0

qt · cjt +
∞X
t=0

qtwt · zjt ≤ x

where

x ≡ q0(1 +R0)a0 +
∞X
t=0

qtwt <∞.
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The constraint follows by integrating the per-period budgets for all t ≥ 0 and is called
the intertemporal budget constraint. Note that, by assumption,

∞X
t=0

qt <∞ and
∞X
t=0

qtwt <∞,

which ensures that the set of feasible {cjt , zjt }∞t=0 is compact. The FOCs give

βtUc(c
j
t , z

j
t ) = µqt,

βtUz(c
j
t , z

j
t ) = µqtwt,

where µ > 0 is Lagrange multiplier associated to the intertermporal budget. You can

check that these conditions coincide with the one derived before.

� Finally, note that the objective is strictly concave and the constraint is linear. There-
fore, the FOCs together with the transversality are both necessary and sufficient. We

conclude:

Proposition 13 Suppose the price sequence {Rt, rt, wt}∞t=0 satisÞes Rt = rt − δ for all t,P∞
t=0 qt <∞, and

P∞
t=0 qtwt <∞, . The plan {cjt , ljt , ajt}∞t=0 solves the individual household�s

problem if and only if

Uz(c
j
t , z

j
t )

Uc(c
j
t , z

j
t )
= wt,

Uc(c
j
t , z

j
t )

βUc(c
j
t+1, z

j
t+1)

= 1 +Rt,

cjt + a
j
t+1 = (1 +Rt)a

j
t + wtl

j
t ,

for all t ≥ 0, and
aj0 > 0 given, and lim

t→∞
βtUc(c

j
t , z

j
t )a

j
t+1 = 0.

Given {ajt}∞t=1, an optimal portfolio is any {kjt , bjt}∞t=1 such that kjt ≥ 0 and bjt = ajt − kjt .
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� Remark: For a more careful discussion on the necessity and sufficiency of the FOCs
and the transversality condition, check Stokey and Lucas.

3.2.2 Firms

� There is an arbitrary number Mt of Þrms in period t, indexed by m ∈ [0,Mt]. Firms

employ labor and rent capital in competitive labor and capital markets, have access

to the same neoclassical technology, and produce a homogeneous good that they sell

competitively to the households in the economy.

� Let Km
t and L

m
t denote the amount of capital and labor that Þrm m employs in period

t. Then, the proÞts of that Þrm in period t are given by

Πmt = F (K
m
t , L

m
t )− rtKm

t − wtLmt .

� The Þrms seeks to maximize proÞts. The FOCs for an interior solution require

FK(K
m
t , L

m
t ) = rt.

FL(K
m
t , L

m
t ) = wt.

You can think of the Þrst condition as the Þrm�s demand for labor and the second

condition as the Þrm�s demand for capital.

� As we showed before in the Solow model, under CRS, an interior solution to the Þrms�
problem to exist if and only if rt and wt imply the same Km

t /L
m
t . This is the case if

and only if there is some Xt ∈ (0,∞) such that

rt = f 0(Xt)

wt = f(Xt)− f 0(Xt)Xt
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where f(k) ≡ F (k, 1). Provided so, Þrm proÞts are zero

Πmt = 0

and the FOCs reduce to

Km
t = XtL

m
t .

That is, the FOCs pin down the capital labor ratio for each Þrm (Km
t /L

m
t ), but not the

size of the Þrm (Lmt ). Moreover, because all Þrms have access to the same technology,

they use exactly the same capital-labor ratio. (See our earlier analysis in the Solow

model for more details.)

3.2.3 Market Clearing

� There is no exogenous aggregate supply of riskless bonds. Therefore, the bond market
clears if and only if

0 =

Z Lt

0

bjtdj.

� The capital market clears if and only ifZ Mt

0

Km
t dm =

Z 1

0

kjtdj

Equivalently, Z Mt

0

Km
t dm = kt

where kt = Kt ≡
R 1
0
kjtdj is the aggregate and per-head supply of capital in the economy.

� The labor market, on the other hand, clears if and only ifZ Mt

0

Lmt dm =

Z Lt

0

ljtdj
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Equivalently, Z Mt

0

Lmt dm = lt

where lt = Lt ≡
R Lt
0
ljtdj is the aggregate and per-head supply of labor force in the

economy.

3.2.4 General Equilibrium: DeÞnition

� The deÞnition of a general equilibrium is quite natural:

DeÞnition 14 An equilibrium of the economy is an allocation {(cjt , ljt , kjt+1, bjt+1)j∈[0,Lt], (Km
t , L

m
t )m∈[0,Mt]}∞t=

and a price path {Rt, rt, wt}∞t=0 such that
(i) Given {Rt, rt, wt}∞t=0, the path {cjt , ljt , kjt+1, bjt+1} maximizes the utility of of household

j, for every j.

(ii) Given (rt, wt), the pair (Km
t , L

m
t ) maximizes Þrm proÞts, for every m and t.

(iii) The bond, capital and labor markets clear in every period

� Remark: In the above deÞnition we surpassed the distribution of Þrm proÞts (or the

stock market). As we explained before in the Solow model, this is without any serious

loss of generality because Þrm proÞts (and thus Þrm value) is zero.

3.2.5 General Equilibrium: Existence, Uniqueness, and Charac-

terization

� In the Solow model, we had showed that the decentralized market economy and the
centralized dictatorial economy were isomorphic. A similar result applies in the Ramsey

model. The following proposition combines the Þrst and second fundamental welfare

theorems, as applied in the Ramsey model:
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Proposition 15 The set of competitive equilibrium allocations for the market economy co-

incide with the set of Pareto allocations for the social planner.

Proof. I will sketch the proof assuming that (a) in the market economy, kj0 + b
j
0 is equal

across all j; and (b) the social planner equates utility across agents. For the more general

case, we need to extend the social planner�s problem to allow for an unequal distribution

of consumption and wealth across agents.The set of competitive equilibrium allocations

coincides with the set of Pareto optimal allocations, each different competitive equilibrium

allocation corresponding to a different system of Pareto weights in the utility of the social

planner. I also surpass the details about the boundedness of prices. For a more careful

analysis, see Stokey and Lucas.

a. We Þrst consider how the solution to the social planner�s problem can be implemented

as a competitive equilibrium. The social planner�s optimal plan is given by {ct, lt, kt}∞t=0 such
that

Uz(ct, 1− lt)
Uc(ct, 1− lt) = FL(kt, lt), ∀t ≥ 0,

Uc(ct, 1− lt)
Uc(ct+1, 1− lt+1) = β[1− δ + FK(kt+1, lt+1)], ∀t ≥ 0,

ct + kt+1 = (1− δ)kt + F (kt, lt), ∀t ≥ 0,
k0 > 0 given, and lim

t→∞
βtUc(ct, 1− lt)kt+1 = 0.

Choose a price path {Rt, rt, wt}∞t=0 such that

Rt = rt − δ,
rt = FK(kt, lt) = f

0(κt),

wt = FL(kt, lt) = f(κt)− f 0(κt)κt,
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where κt ≡ kt/lt. Trivially, these prices ensure that the FOCs are satisÞed for every household
and every Þrm if we set cjt = ct, l

j
t = lt and K

m
t /L

m
t = kt for all j and m. Next, we need to

verify that the proposed allocation satisÞes the budget constraints of each household. From

the resource constraint of the economy,

ct + kt+1 = F (kt, lt) + (1− δ)kt.

From CRS and the FOCs for the Þrms,

F (kt, lt) = rtkt + wtlt.

Combining, we get

ct + kt+1 = (1− δ + rt)kt + wtlt.

As long as cjt = ct, l
j
t = lt, and a

j
t = k

j
t + b

j
t = kt for all j, t, and Rt = rt− δ for all t, it follows

that

cjt + k
j
t+1 + b

j
t+1 = (1− δ + rt)kjt + (1 +Rt)bjt + wtljt ,

which proves that the budget constraint is satisÞed for every j, t. Finally, it is trivial to that

the proposed allocations clear the bond, capital, and labor markets.

b. We next consider the converse, how a competitive equilibrium coincides with the

Pareto solution. Because agents have the same preferences, face the same prices, and are

endowed with identical level of initial wealth, and because the solution to the individual�s

problem is essentially unique (where essentially means unique with respect to cjt , l
j
t , and

ajt = k
j
t + b

j
t but indeterminate with respect to the portfolio choice between k

j
t and b

j
t), every

agent picks the same allocations: cjt = ct, l
j
t = lt and a

j
t = at for all j, t. By the FOCs to the
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individual�s problem, it follows that {ct, lt, at}∞t=0 satisÞes
Uz(ct, 1− lt)
Uc(ct, 1− lt) = wt, ∀t ≥ 0,

Uc(ct, 1− lt)
Uc(ct+1, 1− lt+1) = β[1− δ + rt], ∀t ≥ 0,

ct + at+1 = (1− δ + rt)at + wtlt, ∀t ≥ 0,
a0 > 0 given, and lim

t→∞
βtUc(ct, 1− lt)at+1 = 0.

From the market clearing conditions for the capital and bond markets, the aggregate supply

of bonds is zero and thus

at = kt.

Next, by the FOCs for the Þrms,

rt = FK(kt, lt)

wt = FL(kt, lt)

and by CRS

rtkt + wtlt = F (kt, lt)

Combining the above with the �representative� budget constraints gives

ct + kt+1 = F (kt, lt) + (1− δ)kt, ∀t ≥ 0,

which is simply the resource constraint of the economy. Finally, a0 = k0, and limt→∞ βtUc(ct, 1−
lt)at+1 = 0 with at+1 = kt+1 reduces the social planner�s transversality condition. This con-

cludes the proof that the competitive equilibrium coincides with the social planner�s optimal

plan. QED

� Following the above, we have:

65



George-Marios Angeletos

Proposition 16 An equilibrium always exists. The allocation of production across Þrms

is indeterminate, and the portfolio choice of each household is also indeterminate, but the

equilibrium is unique as regards prices, aggregate allocations, and the distribution of con-

sumption, labor and wealth across households. If initial wealth kj0 + b
j
0 is equal across all

agent j, then cjt = ct, l
j
t = lt and k

j
t + b

j
t = kt for all j. The equilibrium is then given by an

allocation {ct, lt, kt}∞t=0 such that, for all t ≥ 0,

Uz(ct, 1− lt)
Uc(ct, 1− lt) = FL(kt, lt),

Uc(ct, 1− lt)
Uc(ct+1, 1− lt+1) = β[1− δ + FK(kt+1, lt+1)],

kt+1 = F (kt, lt) + (1− δ)kt − ct,

and such that

k0 > 0 given, and lim
t→∞

βtUc(ct, 1− lt)kt+1 = 0.

Finally, equilibrium prices are given by

Rt = R(kt) ≡ f 0(kt)− δ,
rt = r(kt) ≡ f 0(kt),
wt = w(kt) ≡ f(kt)− f 0(kt)kt,

where R0(k) = r0(k) < 0 < w0(k).

Proof. The characterization of the equilibrium follows from our previous analysis. Existence

and uniqueness of the equilibrium follow directly from existence and uniqueness of the social

planner�s optimum, given the coincidence of competitive and Pareto allocations. See Stokey

and Lucas for more details. QED
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3.3 Steady State and Transitional Dynamics

3.3.1 Steady State

� A steady state is a Þxed point (c, l, k) of the dynamic system. A trivial steady state is
at c = l = k = 0. We now consider interior steady states.

Proposition 17 There exists a unique steady state (c∗, l∗, k∗) > 0. The steady-state values

of the capital-labor ratio, the productivity of labor, the output-capital ratio, the consumption-

capital ratio, the wage rate, the rental rate of capital, and the interest rate are all independent

of the utility function U and are pinned down uniquely by the technology F , the depreciation

rate δ, and the discount rate ρ. In particular, the capital-labor ratio κ∗ ≡ k∗/l∗ equates the
net-of-depreciation MPK with the discount rate,

f 0(κ∗)− δ = ρ,

and is a decreasing function of ρ+ δ, where ρ ≡ 1/β − 1. Similarly,

R∗ = ρ, r∗ = ρ+ δ,

w∗ = FL(κ∗, 1) =
Uz(c

∗, 1− l∗)
Uc(c∗, 1− l∗) ,

y∗

l∗
= f(κ∗),

y∗

k∗
= φ(κ∗),

c∗

k∗
=
y∗

k∗
− δ,

where f(κ) ≡ F (κ, 1) and φ(κ) ≡ f(κ)/κ.

Proof. (c∗, l∗, k∗) must solve

Uz(c
∗, 1− l∗)

Uc(c∗, 1− l∗) = FL(k
∗, l∗),

1 = β[1− δ + FK(k∗, l∗)],
c∗ = F (k∗, l∗)− δk∗,
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Let κ ≡ k/l denote the capital-labor ratio at the stead state. By CRS,

F (k, l) = lf(κ)

FK(k, l) = f 0(κ)

FL(k, l) = f(κ)− f 0(κ)κ
F (k, l)

k
= φ(κ)

where f(κ) ≡ F (κ, 1) and φ(κ) ≡ f(κ)/κ. The Euler condition then reduces to

1 = β[1− δ + f 0(κ∗)]

That is, the capital-labor ratio is pinned down uniquely by the equation of the MPK, net of

depreciation, with the discount rate

f 0(κ∗)− δ = ρ

where ρ ≡ 1/β − 1 or, equivalently, β ≡ 1/(1 + ρ). The gross rental rate of capital and the
net interest rate are thus

r∗ = ρ+ δ and R∗ = ρ,

while the wage rate is

w∗ = FL:(κ∗, 1)

The average product of labor and the average product of capital are given by

y∗

l∗
= f(κ∗) and

y∗

k∗
= φ(κ∗),

while, by the resource constraint, the consumption-capital ratio is given by

c∗

k∗
= φ(κ∗)− δ = y∗

k∗
− δ.

The comparative statics are then trivial. QED
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3.3.2 Transitional Dynamics

� Consider the condition that determined labor supply:

Uz(ct, 1− lt)
Uc(ct, 1− lt) = FL(kt, lt).

We can solve this for lt as a function of contemporaneous consumption and capital:

lt = l(ct, kt).

Substituting then into the Euler condition and the resource constraint, we conclude:

Uc(ct, 1− l(ct, kt))
Uc(ct, 1− l(ct, kt)) = β[1− δ + FK(kt+1, l(ct+1, kt+1))]

kt+1 = F (kt, l(ct, kt)) + (1− δ)kt − ct

This is a system of two Þrst-order difference equation in ct and kt. Together with the

initial condition (k0 given) and the transversality condition, this system pins down the

path of {ct, kt}∞t=0.

3.4 The Neoclassical Growth Model with Exogenous

Labor

3.4.1 Steady State and Transitional Dynamics

� Suppose that leisure is not valued, or that the labor supply is exogously Þxed. Either
way, let lt = 1 for all t. Suppose further that preferences exhibit constant elasticity of

intertemporal substitution:

U(c) =
c1−1/θ − 1
1− 1/θ ,
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θ > 0 is reciprocal of the elasticity of the marginal utility of consumption and is called

the elasticity of intertemporal substitution. Under these restrictions, the dynamics

reduce to µ
ct+1
ct

¶θ
= β[1 + f 0(kt+1)− δ] = β[1 +Rt],

kt+1 = f(kt) + (1− δ)kt − ct.

� Finally, we know that the transversality condition is satisÞed if and only if the path
converges to the steady state, and we can also so that the capital stock converges

monotonically to its steady state value. We conclude:

Proposition 18 Suppose that labor is exogenously Þxed and preferences exhibit CEIS. The

path {ct, kt}∞t=0 is the equilibrium path of the economy (and the solution to the social planner�s
problem) if and only if

ct+1
ct

= {β[1 + f 0(kt+)− δ]}θ,

kt+1 = f(kt) + (1− δ)kt − ct,

for all t, with

k0 given and lim
t→∞

kt = k
∗,

where k∗ is the steady state value of capital:

f 0(k∗) = ρ+ δ

For any initial k0 < k∗ (k0 > k∗), the capital stock kt is increasing (respectively, decreasing)

over time and converges to asymptotically to k∗. Similarly, the rate of per-capita consumption

growth ct+1/ct is positive and decreasing (respectively, negative and increasing) over time and

converges monotonically to 0.
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Proof. The policy rule kt+1 = G(kt) is increasing, continuous, and intersects with the

45o only at k = 0 and k = k∗. See Lucas and Stokey for the complete proof. The same

argument as in the Solow model then implies that {kt}∞t=0 is monotonic and converges to
k∗. The monotonicity and convergence of {ct+1/ct}∞t=0 then follows immediately from the

monotonicity and convergence of {kt}∞t=0 together with the fact that f 0(k) is decreasing.

� We will see these results also graphically in the phase diagram, below.

3.4.2 Continuous Time

� Taking logs of the Euler condition and approximating ln β = − ln(1 + ρ) ≈ −ρ and
ln[1− δ + f 0(kt)] ≈ f 0(kt)− δ, we can write the Euler condition as

ln ct+1 − ln ct ≈ θ[f 0(kt+1)− δ − ρ].

We can also rewrite the resource constraint as

kt+1 − kt = f(kt)− δkt − ct.

� The approximation turns out to be exact when time is continuous:

Proposition 19 Suppose that time is continuous. Like before, assume that labor is exoge-

nously Þxed and preferences exhibit CEIS. The path {ct, kt}t∈R+ is the equilibrium path of the

economy (and the solution to the social planner�s problem) if and only if

úct
ct
= θ[f 0(kt)− δ − ρ] = θ[Rt − ρ],

úkt = f(kt)− δkt − ct,

for all t, with

k0 given and lim
t→∞

kt = k
∗,
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where k∗ is the steady state value of capital:

f 0(k∗) = ρ+ δ

Proof. See Barro and Sala-i-Martin for details.

3.4.3 Phase Diagram (Figure 1)

� We can now use the phase diagram to describe the transitional dynamics of the econ-

omy. See Figure 1.

� The úk = 0 locus is given by (c, k) such that

úk = f(k)− δk − c = 0⇔
c = f(k)− δk

On the other hand, the úc = 0 locus is given by (c, k) such that

úc = cθ[f 0(k)− δ − ρ] = 0⇔
k = k∗

Remark: Obviously, c = 0 also ensures úc = 0, but this corresponds to the trivial and

unstable steady state c = 0 = k, so I will ignore it for the rest of the discussion.

� The steady state is simply the intersection of the two loci:

úc = úk = 0 ⇔ k = k∗ ≡ (f 0)−1(ρ+ δ)
c = c∗ ≡ f(k∗)− δk∗

 or {c = k = 0}

72



14.451 Lecture Notes

� The úc = 0 and úk = 0 loci are depicted in Figure 1. Note that the two loci partition the
(c, k) space in four regions. We now examine what is the direction of change in c and

k in each of these four regions.

� Consider Þrst the direction of úc. If 0 < k < k∗ [k > k∗], then and only then úc > 0

[ úc < 0]. That is, c increases [decreases] with time whenever (c, k) lies the left [right] of

the úc = 0 locus. The direction of úc is represented by the vertical arrows in Figure 1.

� Consider next the direction of úk. If c < f(k)− δk [c > f(k)− δk], then and only then
úk > 0 [ úk < 0]. That is, k increases [decreases] with time whenever (c, k) lies below

[above] the úk = 0 locus. The direction of úk is represented by the horizontal arrows in

Figure 1.

� We can now draw the time path of {kt, ct} starting from any arbitrary (k0, c0), as in

Figure 1. Note that there are only two such paths that go through the steady state.

The one with positive slope represents the stable manifold or saddle path. The other

corresponds to the unstable manifold.

� The equilibrium path of the economy for any initial k0 is given by the stable manifold.
That is, for any given k0, the equilibrium c0 is the one that puts the economy on the

saddle path.

� To understand why the saddle path is the optimal path when the horizon is inÞnite,
note the following:

� Any c0 that puts the economy above the saddle path leads to zero capital and

zero consumption in Þnite time, thus violating the Euler condition at that time.

Of course, if the horizon was Þnite, such a path would have been the equilibrium
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path. But with inÞnite horizon it is better to consume less and invest more in

period 0, so as to never be forced to consume zero at Þnite time.

� On the other hand, any c0 that puts the economy below the saddle path leads

to so much capital accumulation in the limit that the transversality condition

is violated. Actually, in Þnite time the economy has cross the golden-rule and

will henceforth become dynamically inefficient. One the economy reaches kgold,

where f 0(kgold) − δ = 0, continuing on the path is dominated by an alternative

feasible path, namely that of investing nothing in new capital and consuming

c = f(kgold)− δkgold thereafter. In other words, the economy is wasting too much
resources in investment and it would better increase consumption.

� Let the function c(k) represent the saddle path. In terms of dynamic programming,
c(k) is simply the optimal policy rule for consumption given capital k. Equivalently,

the optimal policy rule for capital accumulation is given by

úk = f(k)− δk − c(k),

or in discrete time

kt+1 ≈ G(kt) ≡ f(kt) + (1− δ)kt − c(kt).

� Finally, note that, no matter what is the form of U(c), you could also write the dynamics
in terms of k and λ:

úλt
λt

= f 0(kt)− δ − ρ
úkt = f(kt)− δkt − c(λt),

where c(λ) solves Uc(c) = λ, that is, c(λ) ≡ U−1c (λ).Note that Ucc < 0 implies c0(λ) < 0.
As an exercise, you can draw the phase diagram and analyze the dynamics in terms of

k and λ.
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3.5 Comparative Statics and Impulse Responses

3.5.1 Additive Endowment (Figure 2)

� Suppose that each household receives an endowment e > 0 from God. Then, the

household budget is

cjt + k
j
t+1 = wt + rtk

j
t + (1− δ)kjt + e

Optimal consumption growth is thus given again by

Uc(c
j
t)

Uc(c
j
t+1)

= β[1 + rt+1 − δ]

which together with rt = f 0(kt) implies

ct+1
ct

= {β[1 + f 0(kt+1)− δ]}θ

On the other hand, adding up the budget across households gives the resource con-

straint of the economy

kt+1 − kt = f(kt)− δkt − ct + e

� We conclude that the phase diagram becomes

úct
ct
= θ[f 0(kt)− δ − ρ],

úkt = f(kt)− δkt − ct + e.

� In the steady state, k∗ is independent of e and c∗ moves one to one with e.

� Consider a permanent increase in e by ∆e. This leads to a parallel shift in the úk = 0
locus, but no change in the úc = 0 locus. If the economy was initially at the steady

state, then k stays constant and c simply jumps by exactly e. On the other hand, if the
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economy was below the steady state, c will initially increase but by less that e, so that

both the level and the rate of consumption growth will increase along the transition.

See Figure 2.

3.5.2 Taxation and Redistribution (Figures 3 and 4)

� Suppose that labor and capital income are taxed at a ßat tax rate τ ∈ (0, 1). The
government redistributes the proceeds from this tax uniformly across households. Let

Tt be the transfer in period t. Then, the household budget is

cjt + k
j
t+1 = (1− τ)(wt + rtkjt ) + (1− δ)kjt + Tt,

implying
Uc(c

j
t)

Uc(c
j
t+1)

= β[1 + (1− τ )rt+1 − δ].

That is, the tax rate decreases the private return to investment. Combining with

rt = f
0(kt) we infer

ct+1
ct

= {β[1 + (1− τ)f 0(kt+1)− δ]}θ .

Adding up the budgets across household gives

ct + kt+1 = (1− τ )f(kt+1) + (1− δ)kt + Tt

The government budget on the other hand is

Tt = τ

Z
j

(wt + rtk
j
t ) = τf(kt)

Combining we get the resource constraint of the economy:

kt+1 − kt = f(kt)− δkt − ct

Observe that, of course, the tax scheme does not appear in the resource constraint of

the economy, for it is only redistributive and does not absorb resources.
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� We conclude that the phase diagram becomes

úct
ct
= θ[(1− τ)f 0(kt)− δ − ρ],
úkt = f(kt)− δkt − ct.

� In the steady state, k∗ and therefore c∗ are decreasing functions of τ .

A. Unanticipated Permanent Tax Cut

� Consider an unanticipated permanent tax cut that is enacted immediately. The úk = 0
locus does not change, but the úc = 0 locus shifts right. The saddle path thus shifts

right. See Figure 3.

� A permanent tax cut leads to an immediate negative jump in consumption and an

immediate positive jump in investment. Capital slowly increases and converges to a

higher k∗. Consumption initially is lower, but increases over time, so soon it recovers

and eventually converges to a higher c∗.

B. Anticipated Permanent Tax Cut

� Consider an permanent tax cut that is (credibly) announced at date 0 to be enacted
at some date bt > 0. The difference from the previous exercise is that úc = 0 locus now

does not change immediately. It remains the same for t < bt and shifts right only for
t > bt. Therefore, the dynamics of c and k will be dictated by the �old� phase diagram
(the one corresponding to high τ ) for t < bt and by the �new� phase diagram (the one

corresponding to low τ) for t > bt,
� At t = bt and on, the economy must follow the saddle path corresponding to the new
low τ , which will eventually take the economy to the new steady state. For t < bt, the
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economy must follow a path dictated by the old dynamics, but at t = bt the economy
must exactly reach the new saddle path. If that were not the case, the consumption

path would have to jump at date bt, which would violate the Euler condition (and thus
be suboptimal). Therefore, the equilibrium c0 is such that, if the economy follows a

path dictated by the old dynamics, it will reach the new saddle path exactly at t = bt.
See Figure 4.

� Following the announcement, consumption jumps down and continues to fall as long
as the tax cut is not initiated. The economy is building up capital in anticipation

of the tax cut. As soon as the tax cut is enacted, capital continues to increase, but

consumption also starts to increase. The economy then slowly converges to the new

higher steady state.

3.5.3 Productivity Shocks: A prelude to RBC (Figures 5 and 6)

� We now consider the effect of a shock in total factor productivity (TFP). The reaction of
the economy in our deterministic framework is similar to the impulse responses we get

in a stochastic Real Business Cycle (RBC) model. Note, however, that here we consider

the case that labor supply is exogenously Þxed. The reaction of the economy will be

somewhat different with endogenous labor supply, whether we are in the deterministic

or the stochastic case.

� Let output be given by

yt = Atf(kt)
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where At denotes TFP. Note that

rt = Atf
0(kt)

wt = At[f(kt)− f 0(kt)kt]

so that both the return to capital and the wage rate are proportional to TFP.

� We can then write the dynamics as
úct
ct
= θ[Atf

0(kt)− δ − ρ],

úkt = Atf(kt)− δkt − ct.

Note that TFP At affects both the production possibilities frontier of the economy (the

resource constrain) and the incentives to accumulate capital (the Euler condition).

� In the steady state, both k∗ and c∗ are increasing in A.

A. Unanticipated Permanent Productivity Shock

� The úk = 0 locus shifts up and the úc = 0 locus shifts right, permanently.

� c0 may either increase or fall, depending on whether wealth or substitution effect
dominates. Along the transition, both c and k are increasing towards the new higher

steady state. See Figure 5 for the dynamics.

B. Unanticipated Transitory Productivity Shock

� The úk = 0 locus shifts up and the úc = 0 locus shifts right, but only for t ∈ [0,bt] for
some Þnite bt.

� Again, c0 may either increase or fall, depending on whether wealth or substitution
effects dominates. I consider the case that c0 increases. A typical transition is depicted

in Figure 6.

79



George-Marios Angeletos

3.5.4 Government Spending (Figure 7 and 8)

� We now introduce a government that collects taxes in order to Þnance some exogenous
level of government spending.

A. Lump Sum Taxation

� Suppose the government Þnances its expenditure with lump-sum taxes. The household
budget is

cjt + k
j
t+1 = wt + rtk

j
t + (1− δ)kjt − Tt,

implying
Uc(c

j
t)

Uc(c
j
t+1)

= β[1 + rt+1 − δ] = β[1 + f 0(kt+1)− δ]

That is, taxes do not affect the savings choice. On the other hand, the government

budget is

Tt = gt,

where gt denotes government spending. The resource constraint of the economy be-

comes

ct + gt + kt+1 = f(kt) + (1− δ)kt

� We conclude
úct
ct
= θ[f 0(kt)− δ − ρ],

úkt = f(kt)− δkt − ct − gt

� In the steady state, k∗ is independent of g and c∗ moves one-to-one with −g. Along
the transition, a permanent increase in g both decreases c and slows down capital

accumulation. See Figure 7.
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� Note that the effect of government spending Þnanced with lump-sum taxes is isomor-

phic to a negative endowment shock.

B. Distortionary Taxation

� Suppose the government Þnances its expenditure with distortionary income taxation.
The household budget is

cjt + k
j
t+1 = (1− τ )(wt + rtkjt ) + (1− δ)kjt ,

implying

Uc(c
j
t)

Uc(c
j
t+1)

= β[1 + (1− τ )rt+1 − δ] = β[1 + (1− τ)f 0(kt+1)− δ].

That is, taxes now distort the savings choice. On the other hand, the government

budget is

gt = τf(kt)

and the resource constraint of the economy is again

ct + gt + kt+1 = f(kt) + (1− δ)kt.

� We conclude
úct
ct
= θ[(1− τ)f 0(kt)− δ − ρ],

úkt = (1− τ)f(kt)− δkt − ct.

Government spending is now isomorphic to a negative TFP change.

� In the steady state, k∗ is a decreasing function of g (equivalently, τ) and c∗ decreases
more than one-to-one with g. Along the transition, a permanent increase in g (and τ)

drastically slows down capital accumulation. The immediate See Figure 7.
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� Note that the effect of government spending Þnanced with distortionary taxes is iso-
morphic to a negative TFP shock.

3.6 Endogenous Labor Supply, the RBC Propagation

Mechanism, and Beyond

3.6.1 The Phase Diagram with Endogenous Labor Supply

� Solve for labor supply as a function of k and c :
Ux(ct, 1− lt)
Uc(ct, 1− lt) = FL(kt, lt)⇒ lt = l(kt, ct)

Note that l increases with k, but less than one-to-one (or otherwise FL would fall).

This reßects the substitution effect. On the other hand, l falls with c, reßecting the

wealth effect.

� Substitute back into the dynamic system for k and c, assuming CEIS preferences:

úct
ct
= θ[f 0(kt/l(kt, ct))− δ − ρ],

úkt = f(kt, l(kt, ct))− δkt − ct,

which gives a system in kt and ct alone.

� Draw suggestive phase diagram. See Figure ??.

� Note that the úc is now negatively sloped, not vertical as in the model with exogenously
Þxed labor. This reßects the wealth effect on labor supply. Lower c corresponds to

lower effective wealth, which results to higher labor supply for any given k (that is, for

any given wage).
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3.6.2 Impulse Responces Revisited

� Note that the endogeneity of labor supply makes the Euler condition (the úc locus)
sensitive to wealth effects, but also mitigates the impact of wealth effects on the resource

constraint (the úk locus).

� Reconsider the impulse responces of the economy to shocks in productivity or governe-
ment spending.

� Government spending.... If Þnanced with lump sum taxes, an increase in g has a

negative wealth effect, which increases labor supply. This in turn leads an increase in

the MPK and stimulates more investment. At the new steady state the capital-labor

ratio remains the same, as it is simply the one that equates the MPK with the discount

rate, but both employment and the stock of capital go up...

� Note that the above is the supply-side effect of government spending. Contrast this
with the demand-side effect in Keynesian models (e.g., IS-LM).

� Productivity shocks....

3.6.3 The RBC Propagation Mechanism, and Beyond

� Just as we can use the model to �explain� the variation of income and productivity
levels in the cross-section of countries (i.e., do the Mankiw-Romer-Weil exercise), we

can also use the model to �explain� the variation of income, productivity, investment

and employment in the time-series of any given country. Hence, the RBC paradigm.

� The heart of the RBC propagation mechanism is the interaction of consumption

smoothing and deminishing returns to capital accumulation. Explain....
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� This mechanism generates endogenous persistence and ampliÞcation. Explain...

� Enogenous persistence is indeed the other face of conditional convergence. But just as
the model fails to generate a substantially low rate of conditional convergence, it also

fails to generate either substantial persistence or substantial ampliÞcation. For the

model to match the data, we then need to assume that exogenous productivity (the

Solow residual) is itself very volatile and persistent. But then we partly answer and

partly peg the question.

� Hence the search for other endogenous propagation mechanisms.

� Discuss Keynesian models and monopolistic competition... Discuss the potential role
Þnancial markets...

to be completed
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Chapter 4

Applications

4.1 Arrow-DebreuMarkets and Consumption Smooth-

ing

4.1.1 The Intertemporal Budget

� For any given sequence {Rt}∞t=0, pick an arbitrary q0 > 0 and deÞne qt recursively by

qt =
q0

(1 +R0)(1 +R1)...(1 +Rt)
.

qt represents the price of period−t consumption relative to period−0 consumption.

� Multiplying the period-t budget by qt and adding up over all t, we get

∞X
t=0

qt · cjt ≤ q0 · xj0
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where

xj0 ≡ (1 +R0)a0 + hj0,

hj0 ≡
∞X
t=0

qt
q0
[wtl

j
t − T jt ].

The above represents the intertemporal budget constraint. (1+R0)a
j
0 is the household�s

Þnancial wealth as of period 0. T jt is a lump-sum tax obligation, which may depend on

the identity of household but not on its choices. hj0 is the present value of labor income

as of period 0 net of taxes; we often call hj0 the household�s human wealth as of period

0. The sum xj0 ≡ (1 +R0)aj0 + hj0 represents the household�s effective wealth.

� Note that the sequence of per-period budgets and the intertemporal budget constraint
are equivalent.

We can then write household�s consumption problem as follows

max
∞X
t=0

βtU(cjt , z
j
t )

s.t.
∞X
t=0

qt · cjt ≤ q0 · xj0

4.1.2 Arrow-Debreu versus Radner

� We now introduce uncertainty...

� Let q(st) be the period-0 price of a unite of the consumable in period t and event st

and w(st) the period-t wage rate in terms of period-t consumables for a given event st.

q(st)w(st) is then the period-t and event-st wage rate in terms of period-0 consunam-

86



14.451 Lecture Notes

bles. We can then write household�s consumption problem as follows

max
X
t

X
st

βtπ(st)U
¡
cj(st), zj(st)

¢
s.t.

X
t

X
st

q(st) · cj(st) ≤ q0 · xj0

where

xj0 ≡ (1 +R0)a0 + hj0,

hj0 ≡
∞X
t=0

q(st)w(st)

q0
[lj(st)− T j(st)].

(1 +R0)a
j
0 is the household�s Þnancial wealth as of period 0. T

j(st) is a lump-sum tax

obligation, which may depend on the identity of household but not on its choices. hj0

is the present value of labor income as of period 0 net of taxes; we often call hj0 the

household�s human wealth as of period 0. The sum xj0 ≡ (1+R0)aj0+hj0 represents the
household�s effective wealth.

4.1.3 The Consumption Problem with CEIS

� Suppose for a moment that preferences are separable between consumption and leisure
and are homothetic with respect to consumption:

U(c, z) = u(c) + v(z).

u(c) =
c1−1/θ

1− 1/θ

� Letting µ be the Lagrange multiplier for the intertemporal budget constraint, the FOCs
imply

βtπ(st)u0
¡
cj(st)

¢
= µq(st)
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for all t ≥ 0. Evaluating this at t = 0, we infer µ = u0(cj0). It follows that

q(st)

q0
=
βtπ(st)u0 (cj(st))

u0(cj0)
= βtπ(st)

µ
cj(st)

cj0

¶−1/θ
.

That is, the price of a consumable in period t relative to period 0 equals the marginal

rate of intertemporal substitution between 0 and t.

� Solving qt/q0 = βtπ(st)
£
cj(st)/cj0

¤−1/θ
for cj(st) gives

cj(st) = cj0
£
βtπ(st)

¤θ ·q(st)
q0

¸−θ
.

It follows that the present value of consumption is given by

X
t

X
st

q(st)cj(st) = q−θ0 c
j
0

∞X
t=0

£
βtπ(st)

¤θ
q(st)1−θ

Substituting into the resource constraint, and solving for c0, we conclude

cj0 = m0 · xj0

where

m0 ≡ 1P∞
t=0

£
βtπ(st)

¤θ
[q(st)/q0]

1−θ .

Consumption is thus linear in effective wealth. m0 represent the MPC out of effective

wealth as of period 0.

4.1.4 Intertemporal Consumption Smoothing, with No Uncertainty

� Consider for a moment the case that there is no uncertainty, so that cj(st) = cjt and
q(st) = qt for all st.

88



14.451 Lecture Notes

� Then, the riskless bond and the Arrow securities satisfy the following arbitrage condi-
tion

qt =
q0

(1 +R0)(1 +R1)...(1 +Rt)
.

Alternatively,

qt = q0

h
1 + eR0,ti−t

where eR0,t represents the �average� interest rate between 0 and t. Next, note that m0

is decreasing (increasing) in qt if and only if θ > 1 (θ < 1). It follows that the marginal

propensity to save in period 0, which is simply 1 − m0, is decreasing (increasing) ineR0,t, for any t ≥ 0, if and only if θ > 1 (θ < 1).
� A similar result applies for all t ≥ 0. We conclude

Proposition 20 Suppose preferences are seperable between consumption and leisure and

homothetic in consumption (CEIS). Then, the optimal consumption is linear in contempo-

raneous effective wealth:

cjt = mt · xjt

where

xjt ≡ (1 +Rt)ajt + hjt ,

hjt ≡
∞X
τ=t

qt
qt
[wτ l

j
τ − T jτ ],

mt ≡ 1P∞
τ=t β

θ(τ−t)(qτ/qt)1−θ
.

mt is a decreasing (increasing) function of qτ for any τ ≥ t if and only θ > 1 (θ < 1).

That is, the marginal propensity to save out of effective wealth is increasing (decreasing) in

future interest rates if and only if the elasticity of intertemporal substitution is higher (lower)
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than unit. Moreover, for given prices, the optimal consumption path is independent of the

timining of either labor income or taxes.

� Obviously, a similar result holds with uncertainty, as long as there are complete Arrow-
Debreu markets.

� Note that any expected change in income has no effect on consumption as long as
it does not affect the present value of labor income. Also, if there is an innovation

(unexpected change) in income, consumption will increase today and for ever by an

amount proportional to the innovation in the annuity value of labor income.

� To see this more clearly, suppose that the interest rate is constant and equal to the
discount rate: Rt = R = 1/β − 1 for all t. Then, the marginal propensity to consume
is

m = 1− βθ(1 +R)1−θ = 1− β,

the consumption rule in period 0 becomes

cj0 = m ·
£
(1 +R)a0 + h

j
0

¤
and the Euler condition reduces to

cjt = c
j
0

Therefore, the consumer choose a totally ßat consumption path, no matter what is the

time variation in labor income. And any unexpected change in consumption leads to

a parallel shift in the path of consumption by an amount equal to the annuity value

of the change in labor income. This is the manifestation of intertemporal consumption

smoothing.
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� More generally, if the interest rate is higher (lower) than the discount rate, the path
of consumption is smooth but has a positive (negative) trend. To see this, note that

the Euler condition is

log ct+1 ≈ θ[β(1 +R)]θ + log ct.

4.1.5 Incomplete Markets and Self-Insurance

� The above analysis has assumed no uncertainty, or that markets are complete. Ex-
tending the model to introduce idiosyncratic uncertainty in labor income would imply

an Euler condition of the form

u0(cjt) = β(1 +R)Etu0(c
j
t+1)

Note that, because of the convexity of u0, as long as V art[c
j
t+1] > 0, we have Etu0(cjt+1) >

u0(Etcjt+1) and therefore
Etcjt+1
cjt

> [β(1 +R)]θ

This extra kick in consumption growth reßects the precautionary motive for savings.

It remains true that transitory innovations in income result to persistent changes in

consumption (because of consumption smoothing). At the same time, consumers Þnd

it optimal to accumulate a buffer stock, as a vehicle for self-insurance.

4.2 Aggregation and the Representative Consumer

� Consider a deterministic economy populated bymany heterogeneous households. House-
holds differ in their initial asset positions and (perhaps) their streams of labor income,

but not in their preferences. They all have CEIS preferences, with identical θ.
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� Following the analysis of the previous section, consumption for individual j is given by

cjt = mt · xjt .

Note that individuals share the same MPC out of effective wealth because they have

identical θ.

� Adding up across households, we infer that aggregate consumption is given by

ct = mt · xt

where

xt ≡ (1 +Rt)at + ht,

ht ≡
∞X
τ=t

qτ
qt
[wτ lτ − Tτ ],

mt ≡ 1P∞
τ=t β

θ(τ−t)(qτ/qt)1−θ
.

� Next, recall that individual consumption growth satisÞes

qt
q0
=
βtu0(cjt)

u0(cj0)
= βt

Ã
cjt
cj0

!−1/θ
,

for every j. But if all agents share the same consumption growth rate, this should be

the aggregate one. Therefore, equilibrium prices and aggregate consumption growth

satisfy
qt
q0
= βt

µ
ct
c0

¶−1/θ
Equivalently,

qt
q0
=
βtu0(ct)
u0(c0)

.
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� Consider now an economy that has a single consumer, who is endowed with wealth xt
and has preferences

U(c) =
c1−1/θ

1− 1/θ
The Euler condition for this consumer will be

qt
q0
=
βtu0(ct)
u0(c0)

.

Moreover, this consumer will Þnd it optimal to choose consumption

ct = mt · xt.

But these are exactly the aggregative conditions we found in the economy with many

agents.

� That is, the two economies share exactly the same equilibrium prices and allocations.

It is in this sense that we can think of the single agent of the second economy as the

�representative� agent of the Þrst multi-agent economy.

� Note that here we got a stronger result than just the existence of a representative agent.
Not only a representative agent existed, but he also had exactly the same preferences

as each of the agents of the economy. This was true only because agents had identical

preference to start with and their preferences were homothetic. If either condition fails,

the preferences of the representative agent will be �weighted average� of the population

preferences, with the weights depending on the wealth distribution.

� Finally, note that these aggregation results extend easily to the case of uncertainty as
long as markets are complete.
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4.3 Fiscal Policy

4.3.1 Ricardian Equilivalence

� The intertemporal budget for the representative household is given by
∞X
t=0

qtct ≤ q0x0

where

x0 = (1 +R0)a0 +
∞X
t=0

qt
q0
[wtlt − Tt]

and a0 = k0 + b0.

� On the other hand, the intertemporal budget constraint for the government is
∞X
t=0

qtgt + q0(1 +R0)b0 =
∞X
t=0

qtTt

� Substituting the above into the formula for x0, we infer

x0 = (1 +R0)k0 +
∞X
t=0

qt
q0
wtlt −

∞X
t=0

qt
q0
gt

That is, aggregate household wealth is independent of either the outstanding level of

public debt or the timing of taxes.

� We can thus rewrite the representative household�s intertemporal budget as
∞X
t=0

qt[ct + gt] ≤ q0(1 +R0)k0 +
∞X
t=0

qtwtlt

Since the representative agent�s budget constraint is independent of either b0 or {Tt}∞t=0,
his consumption and labor supply will also be independent. But then the resource

constraint implies that aggregate investment will be unaffected as well. Therefore, the
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aggregate path {ct, kt}∞t=0 is independent of either b0 or {Tt}∞t=0. All that matter is the
stream of government spending, not the way this is Þnanced.

� More generally, consider now arbitrary preferences and endogenous labor supply, but
suppose that the tax burden and public debt is uniformly distributed across households.

Then, for every individual j, effective wealth is independent of either the level of public

debt or the timing of taxes:

xj0 = (1 +R0)k
j
0 +

∞X
t=0

qt
q0
wtl

j
t −

∞X
t=0

qt
q0
gt,

Since the individual�s intertemporal budget is independent of either b0 or {Tt}∞t=0, her
optimal plan {cjt , ljt , ajt}∞t=0 will also be independent of either b0 or {Tt}∞t=0 for any
given price path. But if individual behavior does not change for given prices, markets

will continue to clear for the same prices. That is, equilibrium prices are indeed also

independent of either b0 or {Tt}∞t=0. We conclude

Proposition 21 Equilibrium prices and allocations are independent of either the intial level

of public debt, or the mixture of deÞcits and (lump-sum) taxes that the government uses to

Þnance governement spending.

� Remark: For Ricardian equivalence to hold, it is critical both that markets are complete
(so that agents can freely trade the riskless bond) and that horizons are inÞnite (so

that the present value of taxes the household expects to pay just equals the amount of

public debt it holds). If either condition fails, such as in OLG economies or economies

with borrowing constraints, Ricardian equivalence will also fail. Ricardian equivalence

may also fail if there are
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4.3.2 Tax Smoothing and Debt Management

topic covered in class

notes to be completed

4.4 Risk Sharing and CCAPM

4.4.1 Risk Sharing

topic covered in class

notes to be completed

4.4.2 Asset Pricing and CCAPM

topic covered in class

notes to be completed

4.5 Ramsey Meets Tobin: Adjustment Costs and q

topic covered in recitation

notes to be completed

4.6 Ramsey Meets Laibson: Hyperbolic Discounting

4.6.1 Implications for Long-Run Savings

topic covered in class
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notes to be completed

4.6.2 Implications for Self-Insurance

topic covered in class

notes to be completed
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Chapter 5

Overlapping Generations Models

5.1 OLG and Life-Cycle Savings

5.1.1 Households

� Consider a household born in period t, living in periods t and t+ 1. We denote by cyt
his consumption when young and cot+1 his consumption when old.

� Preferences are given by
u(cyt ) + βu(c

o
t+1)

where β denotes a discount factor and u is a neoclassical utility function.

� The household is born with zero initial wealth, saves only for life-cycle consumption
smoothing, and dies leaving no bequests to future generations. The household receives

labor income possibly in both periods of life. We denote by ly and lo the endowments of

effective labor when young and when old, respectively. The budget constraint during
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the Þrst period of life is thus

cyt + at ≤ wtly,

whereas the budget constraint during the second period of life is

cot+1 ≤ wt+1lo + (1 +Rt+1)at.

Adding up the two constraints (and assuming that the household can freely borrow

and lend when young, so that at can be either negative or positive), we derive the

intertemporal budget constraint of the household:

cyt +
cot+1

1 +Rt+1
≤ ht ≡ wtly + wt+1l

o

1 +Rt+1

� The household choose consumption and savings so as to maximize life utility subject
to his intertemporal budget:

max
£
u(cyt ) + βu(c

o
t+1)

¤
s.t. cyt +

cot+1
1 +Rt+1

≤ ht.

The Euler condition gives:

u0(cyt ) = β(1 + rt+1)u
0(cot+1).

In words, the household chooses savings so as to smooth (the marginal utility of)

consumption over his life-cycle.

� With CEIS preferences, u(c) = c1−1/θ/(1− 1/θ), the Euler condition reduces to
cot+1
cyt

= [β(1 +Rt+1)]
θ.
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Life-cycle consumption growth is thus an increasing function of the return on savings

and the discount factor. Combining with the intertemporal budget, we infer

ht = c
y
t +

cot+1
1 +Rt+1

= cyt + β
θ(1 +Rt+1)

θ−1cyt

and therefore optimal consumption during youth is given by

cyt = m(rt+1) · ht

where

m(R) ≡ 1

1 + βθ(1 +R)θ−1
.

Finally, using the period-1 budget, we infer that optimal life-cycle saving are given by

at = wtl
y −m(Rt+1)ht = [1−m(Rt+1)]wtly −m(Rt+1) wt+1l

o

1 +Rt+1

5.1.2 Population Growth

� We denote by Nt the size of generation t and assume that population grows at constant
rate n :

Nt+1 = (1 + n)Nt

� It follows that the size of the labor force in period t is

Lt = Ntl
y +Nt−1lo = Nt

·
ly +

lo

1 + n

¸
We henceforth normalize ly + lo/(1 + n) = 1, so that Lt = Nt.

� Remark: As always, we can reinterpret Nt as effective labor and n as the growth rate
of exogenous technological change.
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5.1.3 Firms and Market Clearing

� Let kt = Kt/Lt = Kt/Nt. The FOCs for competitive Þrms imply:

rt = f 0(kt) ≡ r(kt)
wt = f(kt)− f 0(kt)kt ≡ w(kt)

On the other hand, the arbitrage condition between capital and bonds implies 1+Rt =

1 + rt − δ, and therefore
Rt = f

0(kt)− δ ≡ r(kt)− δ

� Total capital is given by the total supply of savings:

Kt+1 = atNt

Equivalently,

(1 + n)kt+1 = at.

5.1.4 General Equilibrium

� Combining (1 + n)kt+1 = at with the optimal rule for savings, and substituting

rt = r(kt) and wt = w(kt), we infer the following general-equilibrium relation between

savings and capital in the economy:

(1 + n)kt+1 = [1−m(r(kt+1)− δ)]w(kt)ly −m(r(kt+1)− δ) w(kt+1)l
o

1 + r(kt+1)− δ .

� We rewrite this as an implicit relation between kt+1 and kt :

Φ(kt+1, kt) = 0.
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Note that

Φ1 = (1 + n) + h
∂m

∂R

∂r

∂k
+mlo

∂

∂k

µ
w

1 + r

¶
,

Φ2 = −(1−m)∂w
∂k
ly.

Recall that ∂m
∂R
≶ 0⇔ θ ≷ 1, whereas ∂r

∂k
= FKK < 0,

∂w
∂k
= FLK > 0, and ∂

∂k

¡
w
1+r

¢
> 0.

It follows that Φ2 is necessarily negative, but Φ1 may be of either sign:

Φ2 < 0 but Φ1 ≶ 0.

We can thus always write kt as a function of kt+1, but to write kt+1 as a function of

kt,we need Φ to be monotonic in kt+1.

� A sufficient condition for the latter to be the case is that savings are non-decreasing
in real returns:

θ ≥ 1⇒ ∂m

∂r
≥ 0⇒ Φ1 > 0

In that case, we can indeed express kt+1 as a function of kt :

kt+1 = G(kt).

Moreover, G0 = −Φ2

Φ1
> 0, and therefore kt+1 increases monotonically with kt. However,

there is no guarantee that G0 < 1. Therefore, in general there can be multiple steady

states (and poverty traps). See Figure 1.

� On the other hand, if θ is sufficiently lower than 1, the equation Φ(kt+1, kt) = 0 may
have multiple solutions in kt+1 for given kt. That is, it is possible to get equilibrium

indeterminacy. Multiple equilibria indeed take the form of self-fulÞlling prophesies.

The anticipation of a high capital stock in the future leads agents to expect a low
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return on savings, which in turn motivates high savings (since θ < 1) and results to

a high capital stock in the future. Similarly, the expectation of low k in period t + 1

leads to high returns and low savings in the period t, which again vindicates initial

expectations. See Figure 2.

5.2 Some Examples

5.2.1 Log Utility and Cobb-Douglas Technology

� Assume that the elasticity of intertemporal substitution is unit, that the production
technology is Cobb-Douglas, and that capital fully depreciates over the length of a

generation:

u(c) = ln c, f(k) = kα, and δ = 1.

� It follows that the MPC is constant,

m =
1

1 + β

and one plus the interest rate equals the marginal product of capital,

1 +R = 1 + r(k)− δ = r(k)

where

r(k) = f 0(k) = αkα−1

w(k) = f(k)− f 0(k)k = (1− α)kα.

� Substituting into the formula for G, we conclude that the law of motion for capital
reduces to

kt+1 = G(kt) =
f 0(kt)kt
ζ(1 + n)

=
αkαt

ζ(1 + n)
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where the scalar ζ > 0 is given by

ζ ≡ (1 + β)α + (1− α)lo/(1 + n)
β(1− α)ly

Note that ζ is increasing in lo, decreasing in ly, decreasing in β, and increasing in α

(decreasing in 1 − α). Therefore, G (savings) decreases with an increase in lo and a

decrease in ly, with an decrease in β, or with an increase in α.

5.2.2 Steady State

� The steady state is any Þxed point of the G mapping:

kolg = G(kolg)

Using the formula for G, we infer

f 0(kolg) = ζ(1 + n)

and thus kolg = (f 0)−1 (ζ(1 + n)) .

� Recall that the golden rule is given by

f 0(kgold) = δ + n,

and here δ = 1. That is, kgold = (f 0)−1(1 + n).

� Pareto optimality requires

kolg < kgold ⇔ r > δ + n⇔ ζ > 1,

while Dynamic Inefficiency occurs when

kolg > kgold ⇔ r < δ + n⇔ ζ < 1.
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Note that

ζ =
(1 + β)α + (1− α)lo/(1 + n)

β(1− α)ly
is increasing in lo, decreasing in ly, decreasing in β, and increasing in α (decreasing in

1 − α). Therefore, inefficiency is less likely the higher lo, the lower ly, the lower is β,
and the higher α.

� Provide intuition...

� In general, ζ can be either higher or lower than 1. There is thus no guarantee that
there will be no dynamic inefficiency. But, Abel et al argue that the empirical evidence

suggests r > δ + n, and therefore no evidence of dynamic inefficiency.

5.2.3 No Labor Income When Old: The Diamond Model

� Assume lo = 0 and therefore ly = 1. That is, household work only when young. This
case corresponds to Diamond�s OLG model.

� In this case, ζ reduces to
ζ =

(1 + β)α

β(1− α) .

ζ is increasing in α and ζ = 1⇔ α = 1
2+1/β

. Therefore,

r ≷ n+ δ ⇔ ζ ≷ 1⇔ α ≷ (2 + 1/β)−1

Note that, if β ∈ (0, 1), then (2+1/β)−1 ∈ (0, 1/3) and therefore dynamic inefficiency is
possible only if α is sufficiently lower than 1/3. This suggests that dynamic inefficiency

is rather unlikely. However, in an OLG model β can be higher than 1, and the higher

β the more likely to get dynamic inefficiency in the Diamond model.
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� Finally, note that dynamic inefficiency becomes less likely as we increase lo, that is, as
we increase income when old (hint: retirement beneÞts).

5.2.4 Perpetual Youth: The Blanchard Model

� We now reinterpret n as the rate of exogenous technological growth. We assume that
household work the same amount of time in every period, meaning that in effective

terms lo = (1 + n)ly. Under the normalization ly + lo/(1 + n) = 1, we infer ly =

lo/(1 + n) = 1/2.

� The scalar ζ reduces to
ζ =

2(1 + β)α + (1− α)
β(1− α)

Note that ζ is increasing in α, and since α > 0, we have

ζ >
2(1 + β)0 + (1− 0)

β(1− 0) =
1

β
.

� If β ∈ (0, 1), it is necessarily the case that ζ > 1. It follows that necessarily r > n+ δ
and thus

kblanchard < kgold,

meaning that it is impossible to get dynamic inefficiency.

� Moreover, recall that the steady state in the Ramsey model is given by

β[1 + f 0(kramsey)− δ] = 1 + n⇔
f 0(kramsey) = (1 + n)/β ⇔
kramsey = (f

0)−1((1 + n)/β)
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while the OLG model has

f 0(kblanchard) = ζ(1 + n)⇔
kblanchard = (f

0)−1(ζ(1 + n))

Since ζ > 1/β, we conclude that the steady state in Blanchard�s model is necessarily

lower than in the Ramsey model. We conclude

kblanchard < kramsey < kgold.

� Discuss the role of �perpetual youth� and �new-comers�.

5.3 Ramsey Meets Diamond: The Blanchard Model

topic covered in recitation

notes to be completed

5.4 Various Implications

� Dynamic inefficiency and the role of government

� Ricardian equivalence breaks, public debt crowds out investment.

� Fully-funded social security versus pay-as-you-go.

� Bubbles

notes to be completed
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Chapter 6

Endogenous Growth I: AK, H, and G

6.1 The Simple AK Model

6.1.1 Pareto Allocations

� Total output in the economy is given by

Yt = F (Kt, Lt) = AKt,

where A > 0 is an exogenous parameter. In intensive form,

yt = f(kt) = Akt.

� The social planner�s problem is the same as in the Ramsey model, except for the fact

that output is linear in capital:

max
∞X
t=0

u(ct)

s.t. ct + kt+1 ≤ f(kt) + (1− δ)kt
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� The Euler condition gives
u0(ct)
u0(ct+1)

= β (1 + A− δ)

Assuming CEIS, this reduces to

ct+1
ct

= [β (1 + A− δ)]θ

or

ln ct+1 − ln ct = θ(R− ρ)

where R = A − δ is the net social return on capital. That is, consumption growth
is proportional to the difference between the real return on capital and the discount

rate. Note that now the real return is a constant, rather than diminishing with capital

accumulation.

� Note that the resource constraint can be rewritten as

ct + kt+1 = (1 + A− δ)kt.

Since total resources (the RHS) are linear in k, an educated guess is that optimal

consumption and investment are also linear in k. We thus propose

ct = (1− s)(1 + A− δ)kt
kt+1 = s(1 + A− δ)kt

where the coefficient s is to be determined and must satisfy s ∈ (0, 1) for the solution
to exist.

� It follows that
ct+1
ct

=
kt+1
kt

=
yt+1
yt
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so that consumption, capital and income all grow at the same rate. To ensure perpetual

growth, we thus need to impose

β (1 + A− δ) > 1,

or equivalently A− δ > ρ. If that condition were not satisÞed, and instead A− δ < ρ,
then the economy would shrink at a constant rate towards zero.

� From the resource constraint we then have

ct
kt
+
kt+1
kt

= (1 + A− δ),

implying that the consumption-capital ratio is given by

ct
kt
= (1 + A− δ)− [β (1 + A− δ)]θ

Using ct = (1− s)(1 + A− δ)kt and solving for s we conclude that the optimal saving
rate is

s = βθ (1 + A− δ)θ−1 .

Equivalently, s = βθ(1 + R)θ−1, where R = A − δ is the net social return on capital.
Note that the saving rate is increasing (decreasing) in the real return if and only if the

EIS is higher (lower) than unit, and s = β for θ = 1. Finally, to ensure s ∈ (0, 1), we
impose

βθ (1 + A− δ)θ−1 < 1.

This is automatically ensured when θ ≤ 1 and β (1 + A− δ) > 1, as then s =

βθ (1 + A− δ)θ−1 ≤ β < 1. But when θ > 1, this puts an upper bound on A. If

A exceeded that upper bound, then the social planner could attain inÞnite utility, and

the problem is not well-deÞned.
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� We conclude that

Proposition 22 Consider the social planner�s problem with linear technology f(k) = Ak

and CEIS preferences. Suppose (β, θ, A, δ) satisfy β (1 + A− δ) > 1 > βθ (1 + A− δ)θ−1 .
Then, the economy exhibits a balanced growth path. Capital, output, and consumption all

grow at a constant rate given by

kt+1
kt

=
yt+1
yt

=
ct+1
ct

= [β (1 + A− δ)]θ > 1.

while the investment rate out of total resources is given by

s = βθ (1 + A− δ)θ−1 .

The growth rate is increasing in the net return to capital, increasing in the elasticity of

intertemporal substitution, and decreasing in the discount rate.

6.1.2 The Frictionless Competitive Economy

� Consider now how the social planner�s allocation is decentralized in a competitive

market economy.

� Suppose that the same technology that is available to the social planner is available to
each single Þrm in the economy. Then, the equilibrium rental rate of capital and the

equilibrium wage rate will be given simply

r = A and w = 0.

� The arbitrage condition between bonds and capital will imply that the interest rate is

R = r − δ = A− δ.
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� Finally, the Euler condition for the household will give
ct+1
ct

= [β (1 +R)]θ .

� We conclude that the competitive market allocations coincide with the Pareto optimal
plan. Note that this is true only because the private and the social return to capital

coincide.

6.2 A Simple Model of Human Capital

6.2.1 Pareto Allocations

� Total output in the economy is given by

Yt = F (Kt,Ht) = F (Kt, htLt),

where F is a neoclassical production function, Kt is aggregate capital in period t, ht

is human capital per worker, and Ht = htLt is effective labor.

� Note that, due to CRS, we can rewrite output per capita as

yt = F (kt, ht) = F

µ
kt
ht
, 1

¶
ht

kt + ht
[kt + ht] =

or equivalently

yt = F (kt, ht) = A (κt) [kt + ht],

where κt = kt/ht = Kt/Ht is the ratio of physical to human capital, kt + ht measures

total capital, and

A (κ) ≡ F (κ, 1)

1 + κ
≡ f(κ)

1 + κ

represents the return to total capital.
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� Total output can be used for consumption or investment in either type of capital, so
that the resource constraint of the economy is given by

ct + i
k
t + i

h
t ≤ yt.

The laws of motion for two types of capital are

kt+1 = (1− δk)kt + ikt
ht+1 = (1− δh)ht + iht

As long as neither ikt nor i
h
t are constrained to be positive, the resource constraint and

the two laws of motion are equivalent to a single constraint, namely

ct + kt+1 + ht+1 ≤ F (kt, ht) + (1− δk)kt + (1− δh)ht

� The social planner�s problem thus becomes

max
∞X
t=0

u(ct)

s.t. ct + kt+1 + ht+1 ≤ F (kt, ht) + (1− δk)kt + (1− δh)ht

� Since there are two types of capital, we have two Euler conditions, one for each type
of capital. The one for physical capital is

u0(ct)
u0(ct+1)

= β [1 + Fk(kt+1, ht+1)− δk] ,

while the one for human capital is

u0(ct)
u0(ct+1)

= β [1 + Fh(kt+1, ht+1)− δh] .
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� Combining the two Euler condition, we infer

Fk(kt+1, ht+1)− δk = Fh(kt+1, ht+1)− δh.

Remember that F is CRS, implying that both Fk and Fh are functions of the ratio

κt+1 = kt+1/ht+1. In particular, Fk is decreasing in κ and Fh is increasing in κ. The

above condition therefore determines a unique optimal ratio κ∗ such that

kt+1
ht+1

= κt+1 = κ
∗

for all t ≥ 0. For example, if F (k, h) = kαh1−α and δk = δh, then
Fk
Fh
= α

1−α
h
k
and

therefore κ∗ = α
1−α . More generally, the optimal physical-to-human capital ratio is

increasing in the relative productivity of physical capital and decreasing in the relative

depreciation rate of physical capital.

� Multiplying the Euler condition for k with kt+1/(kt+1 + ht+1) and the one for h with
ht+1/(kt+1 + ht+1), and summing the two together, we infer the following �weighted�

Euler condition:

u0(ct)
u0(ct+1)

= β

½
1 +

kt+1[Fk(kt+1, ht+1)− δk] + ht+1[Fh(kt+1, ht+1)− δh]
kt+1 + ht+1

¾
By CRS, we have

Fk(kt+1, ht+1)kt+1 + Fh(kt+1, ht+1)ht+1 = F (kt+1, ht+1) = A (κt+1) [kt+1 + ht+1]

It follows that
u0(ct)
u0(ct+1)

= β

½
1 + A (κt+1)− δkkt+1 + δhht+1

kt+1 + ht+1

¾
Using the fact that κt+1 = κ∗, and letting

A∗ ≡ A (κ∗) ≡ F (κ∗, 1)
1 + κ∗
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represent the �effective� return to total capital and

δ∗ ≡ κ∗

1 + κ∗
δk +

1

1 + κ∗
δh

the �effective� depreciation rate of total capital, we conclude that the �weighted� Euler

condition evaluated at the optimal physical-to-human capital ratio is

u0(ct)
u0(ct+1)

= β [1 + A∗ − δ∗] .

� Assuming CEIS, this reduces to

ct+1
ct

= [β (1 + A∗ − δ∗)]θ

or

ln ct+1 − ln ct = θ(A∗ − δ∗ − ρ)

whereA∗− δ∗ is the net social return to total savings. Note that the return is constant
along the balanced growth path, but it is not exogenous. It instead depends on the ratio

of physical to human capital. The latter is determined optimally so as to maximize

the net return on total savings. To see this, note that kt+1/ht+1 = κ∗ indeed solves the

following problem

max F (kt+1, ht+1)− δkkt+1 − δhht+1
s.t. kt+1 + ht+1 = constant

� Given the optimal ratio κ∗, the resource constraint can be rewritten as

ct + [kt+1 + ht+1] = (1 + A
∗ − δ∗)[kt + ht].
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Like in the simple Ak model, an educated guess is then that optimal consumption and

total investment are also linear in total capital:

ct = (1− s)(1 + A∗ − δ∗)[kt + ht],
kt+1 + ht+1 = s(1 + A

∗ − δ∗)[kt + ht].

The optimal saving rate s is given by

s = βθ (1 + A∗ − δ∗)θ−1 .

� We conclude that

Proposition 23 Consider the social planner�s problem with CRS technology F (k, h) over

physical and human capital and CEIS preferences. Let κ∗ be the ratio k/h that maximizes

F (k, h)− δkk − δhh for any given k + h, and let

A∗ ≡ F (κ∗, 1)
1 + κ∗

and δ∗ ≡ κ∗

1 + κ∗
δk +

1

1 + κ∗
δh

Suppose (β, θ, F, δk, δh) satisfy β (1 + A∗ − δ∗) > 1 > βθ (1 + A∗ − δ∗)θ−1 . Then, the econ-
omy exhibits a balanced growth path. Physical capital, human capital, output, and consump-

tion all grow at a constant rate given by

yt+1
yt

=
ct+1
ct

= [β (1 + A∗ − δ∗)]θ > 1.

while the investment rate out of total resources is given by s = βθ (1 + A∗ − δ∗)θ−1 and the
optimal ratio of physical to human capital is kt+1/ht+1 = κ∗. The growth rate is increas-

ing in the productivity of either type of capital, increasing in the elasticity of intertemporal

substitution, and decreasing in the discount rate.

117



George-Marios Angeletos

6.2.2 Market Allocations

� Consider now how the social planner�s allocation is decentralized in a competitive

market economy.

� The household budget is given by

ct + i
k
t + i

h
t + bt+1 ≤ yt + (1 +Rt)bt.

and the laws of motion for the two types of capital are

kt+1 = (1− δk)kt + ikt
ht+1 = (1− δh)ht + iht

We can thus write the household budget as

ct + kt+1 + ht+1 + bt+1 ≤ (1 + rt − δk)kt + (1 + wt − δh)ht + (1 +Rt)bt.

Note that rt − δk and wt − δh represent the market returns to physical and human
capital, respectively.

� Suppose that the same technology that is available to the social planner is available to
each single Þrm in the economy. Then, the equilibrium rental rate of capital and the

equilibrium wage rate will be given simply

rt = Fk(κt, 1) and wt = Fh(κt, 1),

where κt = kt/ht.

� The arbitrage condition between bonds and the two types of capital imply that

Rt = rt − δk = wt − δh.
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Combining the above with the Þrms� FOC, we infer

Fk(κt, 1)

Fh(κt, 1)
=
rt
wt
=
δh
δk

and therefore κt = κ∗, like in the Pareto optimum. It follows then that

Rt = A
∗ − δ∗,

where A∗ and δ∗ are deÞned as above.

� Finally, the Euler condition for the household is

u0(ct)
u0(ct+1)

= β (1 +Rt) .

Using Rt = A∗ − δ∗, we conclude

yt+1
yt

=
ct+1
ct

= [β (1 + A∗ − δ∗)]θ

� Hence, the competitive market allocations once again coincide with the Pareto optimal
plan. Note that again this is true only because the private and the social return to

each type of capital coincide.

6.3 Learning by Education (Ozawa and Lucas)

see problem set

notes to be completed
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6.4 Learning by Doing and Knowledge Spillovers (Ar-

row and Romer)

6.4.1 Market Allocations

� Output for Þrm m is given by

Y mt = F (Km
t , htL

m
t )

where ht represents the aggregate level of human capital or knowledge. ht is endoge-

nously determined in the economy (we will specify in a moment how), but it is taken

as exogenous from either Þrms or households.

� Firm proÞts are given by

Πmt = F (K
m
t , htL

m
t )− rtKm

t − wtLmt

The FOCs give

rt = FK (K
m
t , htL

m
t )

wt = FL (K
m
t , htL

m
t )ht

Using the market clearing conditions for physical capital and labor, we infer Km
t /L

m
t =

kt, where kt is the aggregate capital labor ratio in the economy. We conclude that,

given kt and ht, market prices are given by

rt = FK(kt, ht) = f
0(κt)

wt = FL(kt, ht)ht = [f(κt)− f 0(κt)κt]ht

where f(κ) ≡ F (κ, 1) is the production function in intensive form and κt = kt/ht.
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� Households, like Þrms, take wt, rt and ht as exogenously given. The representative
household maximizes utility subject to the budget constraint

ct + kt+1 + bt+1 ≤ wt + (1 + rt − δ)kt + (1 +Rt)bt.

Arbitrage between bonds and capital imply Rt = rt − δ and the Euler condition gives
u0(ct)
u0(ct+1)

= β (1 +Rt) = β(1 + rt − δ).

� To close the model, we need to specify how ht is determined. Following Arrow and
Romer, we assume that knowledge accumulation is the unintentional by-product of

learning-by-doing in production. We thus let the level of knowledge to be proportional

to either the level of output, or the level of capital:

ht = ηkt,

for some constant η > 0.

� It follows that the ratio kt/ht = κt is pinned down by κt = 1/η. Letting the constants
A and ω be deÞned

A ≡ f 0(1/η) and ω ≡ f(1/η)η − f 0(1/η),

we infer that equilibrium prices are given by

rt = A and wt = ωkt.

Substituting into the Euler condition gives

u0(ct)
u0(ct+1)

= β (1 + A− δ) .

Finally, it is immediate that capital and output grow at the same rate as consumption.

We conclude
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Proposition 24 Let A ≡ f 0(1/η) and ω ≡ f(1/η)η − f 0(1/η), and suppose β (1 + A− δ) >
1 > βθ (1 + A− δ)θ−1 . Then, the market economy exhibits a balanced growth path. Physical
capital, knowledge, output, wages, and consumption all grow at a constant rate given by

yt+1
yt

=
ct+1
ct

= [β (1 + A− δ)]θ > 1.

The wage rate is given by wt = ωkt, while the investment rate out of total resources is given

by s = βθ (1 + A− δ)θ−1.

6.4.2 Pareto Allocations and Policy Implications

� Consider now the Pareto optimal allocations. The social planner recognizes that knowl-
edge in the economy is proportional to physical capital and internalizes the effect of

learning-by-doing. He thus understands that output is given by

yt = F (kt, ht) = A
∗kt

where A∗ ≡ f(1/η)η = A + ω represents the social return on capital. It is therefore

as if the social planner had access to a linear technology like in the simple Ak model,

and therefore the Euler condition for the social planner is given by

u0(ct)
u0(ct+1)

= β (1 + A∗ − δ) .

� Note that the social return to capital is higher than the private (market) return to
capital:

A∗ > A = rt

The difference is actually ω, the fraction of the social return on savings that is �wasted�

as labor income.
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Proposition 25 Let A∗ ≡ A+ω ≡ f(1/η)η and suppose β (1 + A∗ − δ) > 1 > βθ (1 + A∗ − δ)θ−1 .
Then, the Pareto optimal plan exhibits a balanced growth path. Physical capital, knowledge,

output, wages, and consumption all grow at a constant rate given by

yt+1
yt

=
ct+1
ct

= [β (1 + A∗ − δ)]θ > 1.

Note that A < A∗, and therefore the market growth rate is lower than the Pareto optimal

one.

� Exercise: Reconsider the market allocation and suppose the government intervenes by
subsidizing either private savings or Þrm investment. Find, in each case, what is the

subsidy that implements the optimal growth rate. Is this subsidy the optimal one, in

the sense that it maximizes social welfare?

6.5 Government Services (Barro)

notes to be completed
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Chapter 7

Endogenous Growth II: R&D and

Technological Change

7.1 Expanding Product Variety (Romer)

� There are three production sectors in the economy: A Þnal-good sector, an intermediate
good sector, and an R&D sector.

� The Þnal good sector is perfectly competitive and thus makes zero proÞts. Its output
is used either for consumption or as input in each of the other two sector.

� The intermediate good sector is monopolistic. There is product differentiation. Each
intermediate producer is a quasi-monopolist with respect to his own product and thus

enjoys positive proÞts. To become an intermediate producer, however, you must Þrst

acquire a �blueprint� from the R&D sector. A �blueprint� is simply the technology or

know-how for transforming Þnal goods to differentiated intermediate inputs.
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� The R&D sector is competitive. Researchers produce �blueprints�, that is, the technol-
ogy for producing an new variety of differentiated intermediate goods. Blueprints are

protected by perpetual patents. Innovators auction their blueprints to a large number

of potential buyers, thus absorbing all the proÞts of the intermediate good sector. But

there is free entry in the R&D sector, which drive net proÞts in that sector to zero as

well.

7.1.1 Technology

� The technology for Þnal goods is given by a neoclassical production function of labor
L and a composite factor Z:

Yt = F (Xt, Lt) = A(Lt)1−α(Xt)α.

The composite factor is given by a CES aggregator of intermediate inputs:

Xt =
·Z Nt

0

(Xt,j)
εdj

¸1/ε
,

where Nt denotes the number of different intermediate goods available in period t and

Xt,j denotes the quantity of intermediate input j employed in period t.

� In what follows, we will assume ε = α, which implies

Yt = A(Lt)
1−α

Z Nt

0

(Xt,j)
αdj

Note that ε = α means that the elasticity of substitution between intermediate inputs

is 1 and therefore the marginal product of each intermediate input is independent of

the quantity of other intermediate inputs:

∂Yt
∂Xt,j

= αA

µ
Lt
Xt,j

¶1−α
.
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More generally, intermediate inputs could be either complements or substitutes, in the

sense that the marginal product of input j could depend either positively or negatively

on Xt.

� We will interpret intermediate inputs as capital goods and therefore let aggregate
�capital� be given by the aggregate quantity of intermediate inputs:

Kt =

Z Nt

0

Xt,jdj.

� Finally, note that if Xt,j = X for all j and t, then

Yt = AL
1−α
t NtX

α

and

Kt = NtX,

implying

Yt = A(NtLt)
1−α(Kt)

α

or, in intensive form, yt = AN 1−α
t kαt . Therefore, to the extent that all intermediate

inputs are used in the same quantity, the technology is linear in knowledge N and

capital K. Therefore, if both N and K grow at a constant rate, as we will show to be

the case in equilibrium, the economy will exhibit long run growth like in an Ak model.

7.1.2 Final Good Sector

� The Þnal good sector is perfectly competitive. Firms are price takers.

� Final good Þrms solve

max Yt − wtLt −
Z Nt

0

(pt,jXt,j)dj
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where wt is the wage rate and pt,j is the price of intermediate good j.

� ProÞts in the Þnal good sector are zero, due to CRS, and the demands for each input
are given by the FOCs

wt =
∂Yt
∂Lt

= (1− α)Yt
Lt

and

pt,j =
∂Yt
∂Xt,j

= αA

µ
Lt
Xt,j

¶1−α
for all j ∈ [0, Nt].

7.1.3 Intermediate Good Sector

� The intermediate good sector is monopolistic. Firms understand that they face a

downward sloping demand for their output.

� The producer of intermediate good j solves

max Πt,j = pt,jXt,j − κ(Xt,j)

subject to the demand curve

Xt,j = Lt

µ
αA

pt,j

¶ 1
1−α

,

where κ(X) represents the cost of producing X in terms of Þnal-good units.

� We will let the cost function be linear:

κ(X) = X.

The implicit assumption behind this linear speciÞcation is that technology of producing

intermediate goods is identical to the technology of producing Þnal goods. Equivalently,
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you can think of intermediate good producers buying Þnal goods and transforming

them to intermediate inputs. What gives them the know-how for this transformation

is precisely the blueprint they hold.

� The FOCs give
pt,j = p ≡ 1

α
> 1

for the optimal price, and

Xt,j = xL

for the optimal supply, where

x ≡ A 1
1−αα

2
1−α .

� Note that the price is higher than the marginal cost (p = 1/α > κ0(X) = 1), the

gap representing the mark-up that intermediate-good Þrms charge to their customers

(the Þnal good Þrms). Because there are no distortions in the economy other than

monopolistic competition in the intermediate-good sector, the price that Þnal-good

Þrms are willing to pay represents the social product of that intermediate input and

the cost that intermediate-good Þrms face represents the social cost of that intermediate

input. Therefore, the mark-up 1/α gives the gap between the social product and the

social cost of intermediate inputs. (Hint: The social planner would like to correct for

this distortion. How?)

� The resulting maximal proÞts are

Πt,j = πL

where

π ≡ (p− 1)x = 1−α
α
x = 1−α

α
A

1
1−αα

2
1−α .
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7.1.4 The Innovation Sector

� The present value of proÞts of intermediate good j from period t and on is given by

Vt,j =
X
τ=t

qτ
qt
Πτ,j

or recursively

Vt,j = Πt,j +
Vt+1,j
1 +Rt+1

� We know that proÞts are stationary and identical across all intermediate goods: Πt,j =
πL for all t, j. As long as the economy follows a balanced growth path, we expect the

interest rate to be stationary as well: Rt = R for all t. It follows that the present value

of proÞts is stationary and identical across all intermediate goods:

Vt,j = V =
πL

R
.

Equivalently, RV = πL, which has a simple interpretation: The opportunity cost

of holding an asset which has value V and happens to be a �blueprint�, instead of

investing in bonds, is RV ; the dividend that this asset pays in each period is πL;

arbitrage then requires the dividend to equal the opportunity cost of the asset, namely

RV = πL.

� New blueprints are also produced using the same technology as Þnal goods. In effect,
innovators buy Þnal goods and transform them to blueprints at a rate 1/η.

� Producing an amount ∆N of new blueprints costs η ·∆N, where η > 0 measures the
cost of R&D in units of output. On the other hand, the value of these new blueprints

is V ·∆N, where V = πL/R. Net proÞts for a research Þrm are thus given by

(V − η) ·∆N
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Free entry in the sector of producing blueprints then implies

V = η.

7.1.5 Households

� Households solve

max
∞X
t=0

βtu(ct)

s.t. ct + at+1 ≤ wt + (1 +Rt)at

� As usual, the Euler condition gives

u0(ct)
u0(ct+1)

= β(1 +Rt+1).

And assuming CEIS, this reduces to

ct+1
ct

= [β(1 +Rt+1)]
θ .

7.1.6 Resource Constraint

� Final goods are used either for consumption by households, or for production of inter-
mediate goods in the intermediate sector, or for production of new blueprints in the

innovation sector. The resource constraint of the economy is given by

Ct +Kt + η ·∆Nt = Yt,

where Ct = ctL, ∆Nt = Nt+1 −Nt, and Kt =
R Nt
0
Xt,jdj.
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7.1.7 General Equilibrium

� Combining the formula for the value of innovation with the free-entry condition, we
infer πL/R = V = η. It follows that the equilibrium interest rate is

R =
πL

η
= 1−α

α
A

1
1−αα

2
1−αL/η,

which veriÞes our earlier claim that the interest rate is stationary.

� The resource constraint reduces to

Ct
Nt
+ η ·

·
Nt+1
Nt

− 1
¸
+X =

Yt
Nt
= AL1−αXα,

where X = xL = Kt/Nt. It follows that Ct/Nt is constant along the balanced growth

path, and therefore Ct, Nt, Kt, and Yt all grow at the same rate, γ.

� Combining the Euler condition with the equilibrium condition for the real interest rate,
we conclude that the equilibrium growth rate is given by

1 + γ = βθ [1 +R]θ = βθ
h
1 + 1−α

α
A

1
1−αα

2
1−αL/η

iθ
� Note that the equilibrium growth rate of the economy decreases with η, the cost of

expanding product variety or producing new �knowledge�.

� The growth rate is also increasing in L or any other factor that increases the �scale�
of the economy and thereby raises the proÞts of intermediate inputs and the demand

for innovation. This is the (in)famous �scale effect� that is present in many models of

endogenous technological change. Discuss....
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7.1.8 Pareto Allocations and Policy Implications

� Consider now the problem of the social planner. Obviously, due to symmetry in pro-

duction, the social planner will choose the same quantity of intermediate goods for all

varieties: Xt,j = Xt = xtL for all j. Using this, we can write the problem of the social

planner simply as maximizing utility,

max
∞X
t=0

βtu(ct),

subject to the resource constraint

Ct +Nt ·Xt + η · (Nt+1 −Nt) = Yt = AL1−αNtXα
t ,

where Ct = ctL.

� The FOC with respect to Xt gives

Xt = x
∗L,

where

x∗ = A
1

1−αα
1

1−α

represents the optimal level of production of intermediate inputs.

� The Euler condition, on the other hand, gives the optimal growth rate as

1 + γ∗ = βθ [1 +R∗]θ = βθ
h
1 + 1−α

α
A

1
1−αα

1
1−αL/η

iθ
,

where

R∗ = 1−α
α
A

1
1−αα

1
1−αL/η

represents that social return on savings.
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� Note that
x∗ = x · α− 1

1−α > x

That is, the optimal level of production of intermediate goods is higher in the Pareto

optimum than in the market equilibrium. This reßects simply the fact that, due to

the monopolistic distortion, production of intermediate goods is inefficiently low in the

market equilibrium. Naturally, the gap x∗/x is an increasing function of the mark-up

1/α.

� Similarly,
R∗ = R · α− 1

1−α > R.

That is, the market return on savings (R) falls short of the social return on savings

(R∗), the gap again arising because of the monopolistic distortion in the intermediate

good sector. It follows that

1 + γ∗ > 1 + γ,

so that the equilibrium growth rate is too low as compared to the Pareto optimal

growth rate.

� Policy exercise: Consider three different types of government intervention: A subsidy
on the production of intermediate inputs; an subsidy on the production of Þnal goods

(or the demand for intermediate inputs); and a subsidy on R&D.Which of these policies

could achieve an increase in the market return and the equilibrium growth rate? Which

of these policies could achieve an increases in the output of the intermediate good

sector? Which one, or which combination of these policies can implement the Þrst best

allocations as a market equilibrium?
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7.1.9 Introducing Skilled Labor and Human Capital

notes to be completed

7.1.10 International Trade, Technology Diffusion, and other im-

plications

notes to be completed

7.2 Increasing Product Quality (Aghion-Howitt)

topic covered in recitation

notes to be completed
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