
Notes in Learning Scheme for 16.410 and 16.413

1 Resources

1. SCM Scheme manual
http://www.swiss.ai.mit.edu/˜jaffer/r5rs_toc.html

http://www.swiss.ai.mit.edu/˜jaffer/scm_toc

http://www.swiss.ai.mit.edu/˜jaffer/SCM.html

2. Edwin References
http://sicp.ai.mit.edu/Spring-2003/edwin-info.html

3. The Structure and Interpretation of Computer Programs byH. Abelson and G. Sussman with J. Sussman.
http://mitpress.mit.edu/sicp/full-text/book/book.ht ml

4. Secondary resources:

• Teach Yourself Scheme in Fixnum Days by Dorai Sitaram.
http://download.plt-scheme.org/doc/205/pdf/t-y-sche me.pdf

• SLIB
http://swissnet.ai.mit.edu/˜jaffer/SLIB.html

2 Running Scheme

by Andreas Hoffman

Introduction

This jumpstart shows you the basics of getting Scheme started, running simple programs, simple editing and debug-
ging, and exiting out of Scheme. The jumpstart is oriented towards Windows installations, but can be adapted for Unix
and other installations. Note that the Scheme installed in the 16.410 computer lab is the Windows version.

Please note that this jumpstart will give you only the most rudimentary skills in Scheme. To get through the course,
you will have to obtain a bit more information. The Scheme user and reference manuals are excellent resources,
and are available as part of the Scheme installation; just goto the Windows Start menu, and select: Programs, MIT
Scheme, Documentation. Please see the course web page for the url to the Scheme download site and the location and
hours of the course lab.

Hello World

Start the Scheme interpreter by going to the Windows start menu and selecting: Programs, MIT Scheme, Scheme. At
the prompt, enter the following form:

1 ]=> (begin
(display "Hello, World!")
(newline))
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The interpreter prints out
Hello, World
1 ]=>

The interpreter also prints out a message indicating ”unspecified return value”. This is not an error message; it simply
states that the Scheme form you entered doesn’t return any value. Some forms return values, some don’t. Now, enter
the following form:

1 ]=> (begin
(display "Hello, World!")
(newline) 5)

Now, the interpreter indicates the returned value (5). Let’s exit Scheme (don’t worry, we’ll come back to it). To exit,
simply enter the form:

1 ]=> (exit)

Using Edwin

Edwin is the editor that comes with Scheme. Edwin is based on Emacs, and therefore, many of the keystroke combi-
nations in Edwin are the same as they are in Emacs. You don’t have to use Edwin to edit Scheme programs (you could
do it in Wordpad, for example). However, you are highly encouraged to learn the basics of using Edwin; it will save
you time later.

To start Edwin, go to the Windows Start menu, and select: Programs, MIT Scheme, Edwin. This will bring up the
Edwin editor. Type in one of the previous sequence that we used to generate the hello world message. Then, with the
cursor at the end of the form, use the keystroke combination
ctrl-x ctrl-e
to run the evaluator. Note that in the Scheme editor, forms are not evaluated automatically.

Now, let’s write a Scheme program and save it in a file. First, to get a new buffer, do
ctrl-x ctrl-f
Edwin will prompt you for a path. Enter an appropriate path for your directory, and end it with the file name
HelloWorld.scm . Scheme will indicate that this is a new file. Now, enter one ofthe previous hello world ex-
pressions into the new buffer. When done, do
ctrl-x ctrl-s
This saves the file. Next, do
ctrl-x b

This switches you back to the Edwin Scheme interpreter. Loadthe file HelloWorld.scm into the interpreter by
typing at the prompt
(load [path])
where [path] is the complete path that describes where the HelloWorld.scm file is. Then doctrl-x ctrl-e to
evaluate. Note that the result is the same as when this was typed in directly to the interpreter. Leave Edwin by doing
ctrl-x ctrl-c .

3 Programming in Scheme

These notes are not intended to teach a novice programmer Scheme. If you have no experience in programming, or
want to you should read the elegant “Structure and Interpretation of Computer Programs”. But, if you want to get
started on 16.410/413 assignments in this crazy language, then the following might help.
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In Matlab, we give instructions to an interpreter, and they are executed by the interpreter. A variable gets some value,
a string is printed to the screen, a window is opened, etc. Each line of code has some intended effect. In C, Java or
Ada, there is an intermediate step of compilation, so the effect of each line of code is delayed, but we again write the
code intending for each line to do something.

Scheme is different. I find it most useful to think of programming in Scheme as, not so much giving instructions,
but asking questions of the Scheme interpreter. In principle, the intention of each line of code in Scheme is not to do
something, but to get an answer back. Think of the following line of Scheme code, entered at the prompt (the prompt
is the1 ]=> thingy):

1 ]=> (* 3 2)
;Value: 6

1 ]=>

Such a line of code makes no sense in C:

#include <math.h>

int main(int argc, char *argv[])
{

3*2;
}

In C (or Ada, or Java), this only makes sense with the effect ofprinting it out, or storing it in a variable, or writing it
to file...:

#include <math.h>

int main(int argc, char *argv[]) {
printf("%d\n", 3*2);

}

Unlike other languages you may be used to, where each line of code is an instruction, everything in Scheme is a form
or expression that has a value. Scheme expressions come in two forms: primitives that just have some value

6

and recursive expressions that are formed by an operator anda list of arguments:

(operator arg1 arg2 arg3)

Lists are the basic (maybe the only) data structure in Scheme. We can get more complicated expressions by nesting
lists within lists, but more on that later.

Some expressions are special in that they have side-effects, like printing, or opening a file, or attaching a variable
name to the value of a particular expression, but it’s important to think less aboutdoing instructions than it is about
evaluating expressions and getting a value back. This difference is reflected in how Scheme operates: the guts of the
Scheme interpreter is typically implemented using a “Read-Evaluate-Print” loop. The Scheme interpreter process the
prompt line (or an input file) one expression at a time, reading the expression, evaluating it, and returning the value of
that expression. That value might be a number we care about, or that value might be the result of defining a subroutine
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(or function, or procedure, depending on what you are used tocalling them). If the value of the last expression is in
fact the result of defining a new subroutine, then you or I might not care about the specific details of that value: we are
not going to be able to interpret what Scheme gives us after evaluating the definition of thesqrt function the way we
can interpret the value of(* 3 2) , but the definition of thesqrt functionhas a value, and that value is useful to us
in performing tasks, even if we cannot actually examine the value and learn anything from it.

Of course, if the objective of every Scheme expression is to get a value back, it’s hard to get anything done as com-
plicated ideas need complicated expressions. We thereforeneed operators that are “special”, in that they have side
effects.

Naming Values

The first thing we might want to do is to store values in variables. For example,

1 ]=> (define name "Nick Roy")
;Value: name

Define is the first operator that has a side-effect. The value of the define statement is the name of the newly-defined
thing, but (without explicitly saying so), Scheme has attached the name to the value. If I ask the interpreter what the
value ofname is, it tells me:

1 ]=> name
;Value 6: "Nick Roy"

I can define a list of items:

1 ]=> (define l ’(1 2 3 4))

I can also define a list of items this way:

1 ]=> (define l (list 1 2 3 4))

The difference between these two expressions is that’(1 2 3 4) does not take the value of each symbol, whereas
(list 1 2 3 4) does.

I can do math this way:

1 ]=> (define six (* 3 2))
;Value: six
1 ]=> six
;Value: 6

Notice thatsix evaluates to a useful value (as does6), but (six) does not, since lists are evaluated by taking the
value of the first symbol and using it as an operator.six evaluates to6, which is not an operator. Operators are things
like * , - , concat , etc. And of course,define is an operator itself, and adefine expression itself is a well-formed
list.

Naming Subroutines

Define is the general-purpose operator for attaching names to things. We use it to attach names to chunks of Scheme
code that can be evaluated.
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1 ]=> (define (six-func) (* 3 2))
;Value: six-func

Here, I’ve definedsix-func to be a function that, when evaluated, returns the expression (* 3 2) . Notice the
difference between

1 ]=> (define six-func (* 3 2))
;Value: six-func
1 ]=> six-func
;Value 6

and

1 ]=> (define (six-func) (* 3 2))
;Value: six-func
1 ]=> six-func
;Value 7: #[compound-procedure 7 six-func]

If I ask for six-func to be evaluated (rather than asking for its value as I just did), I get

1 ]=> (six-func)
;Value: 6

I have definedsix-func to evaluate to2 × 3, which is a function that doesn’t depend on anything else. I can define
a new function that multiplies2 by some number and called ittwo-times . When I evaluatetwo-times on some
number, you might think of a similar process in C or Java as calling a function (or method) calledtwo-times with
some number as a parameter. So,

1 ]=> (define (two-times n) (* 2 n))

is a lot like

double two-times(double n) {
return 2*n;

}

But, in Ada or Java, a function like two-times is a fundamentally different beast than the number2, whereas in
Scheme, the difference is just the specific value that each represents. To the read-print-eval loop, it’s perfectly valid to
call two-times on itself:

1 ]=> (two-times two-times)

although when this is interpreted, the evaluator complainsthat the special symbol* can’t be used with compound-
procedures (which is what Scheme calls functions, or procedures, or chunks of Scheme code that we can refer to later).
There are other functions thatare useful with compound-procedures, and that it makes perfectsense to use a function
name liketwo-times as a parameter as well as an operator.

The most powerful property of Scheme is how each operand in anevaluation is passed to the evaluation. When an
expression is evaluated, the value of each item in the list isgiven to the operator. For instance, in the expression

1 ]=> (* 2 3)
;Value: 6
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2 and3 are the operands in the list(* 2 3) that are passed to the operator∗, which in this case multiplies them.
Each of those operands needs to have a value. If the operand isa primitive, such as a number, a string or a compound-
procedure definition, then that’s the value. If, however, the operand is an expression itself, then that expression is
evaluated.

1 ]=> (* 2 (* 3 4))
;Value: 24

The evaluation of operands is doneas needed. If I have a list of items that I want to preserve as a list (I don’t want the
list to be evaluated), then I can protect it using a quotationmark. Examine the difference between

1 ]=> (define list-of-symbols ’(* 3 2))
;Value: list-of-symbols
1 ]=> (define six (* 3 2))
;Value: six
1 ]=> list-of-symbols
;Value 12: (* 3 2)
1 ]=> six
;Value: 6

Understanding when to use an actual list, and when a list needs to be evaluated, can be tricky.

Conditionals

Besides being able to abstract Scheme code using compound-procedures, we want to be able to control program flow.
For instance, we would like Scheme functions that respond toexternal input or generate different output depending on
different properties of the input. For instance, we might define amax operator that returns the maximum of two items.
We can use thecond special form:

(cond (pred clause) (pred clause) ...)

So we can define ourmax as

(define (max a b)
(cond ((> a b) a)

(else b)))

else is a special form within cond that always evaluates as true. There are a number of ways to combine tests, using
and , or , etc. Althoughcond has no side-effects, it is a special form because evaluationof the expression stops on
the first operand with a true predicate. (If it were not a special form, each predicate would be evaluated, which would
be ok although possibly inefficient, but each clause would also be evaluated, which would be no good in situations
where clauses had side-effects and we only wantedone of the side-effects to happen.

List Processing

As you must have realized, Scheme is very list-oriented. We have already seen one way to create a list, or maybe you
prefer to think in terms of vectors:

(define v1 ’(1 2 3 4))
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This is Scheme short hand for an explicit operation to createlists:

(define v2 (list 1 2 3 4))

We can extract items from the front of the list, using a operator called (for historical reasons)car , and we can get
everythingbut the front of the list usingcdr .

]=> (car v1)
;Value: 1
]=> (cdr v1)
;Value 5: (2 3 4)

Scheme has a somewhat bizarre shorthand for composingcar ’s andcdr ’s

1 ]=> (caddr v1)
;Value: 3

We can use the list operators to do things like take the dot product of two vectors.

1 ]=> (define (dot a b)
(if (or (null? a) (null? b)) 0

(+ (* (car a) (car b)) (dot (cdr a) (cdr b)))))
;Value: dot
1 ]=> (dot v1 v2)
;Value: 70

We can assemble lists using theappend operator, which takes the elements of two or more lists and creates a new list
of those elements:

1 ]=> (append v1 v2)
;Value 7: (1 2 3 4 5 6 7 8)

You have to be careful to pass lists to append. This works:

1 ]=> (append ’(* 3 2) ’(* 4 5))
;Value 11: (* 3 2 * 4 5)

but might not be what you want. This might be what you want:

1 ]=> (append (* 3 2) (* 4 5))
;The object 6, passed as an argument to append, is not a list.

but doesn’t work. This is probably what you want:

1 ]=> (append (list (* 3 2)) (list (* 4 5)))
;Value 12: (6 20)

Thecons operator takes a value and a list, and returns a new listcons tructed from the value and the list:

1 ]=> (cons (* 3 2) (list (* 4 5)))
;Value 12: (6 20)

Notice that the first element after the operator evaluates toa value, not a list.
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Iteration and Recursion

Iteration is something that can take a long time to get accustomed to in Scheme. There is no iteration operator (although
you can define one). Instead, doing something over and over again is often performed using recursion: a function (or
compound-procedure) calling itself with new parameters. Acommon example of recursion is the factorial function:

(define (factorial n)
(cond ((= n 1) 1)

(else (* n (factorial (- n 1))))))

Notice how factorial calls itself with a parameter whose value is one less than whatever it was called with?

4 Functions as parameters

In addition to recursion, many things that you might be used to doing in C or Java within by iteration can be done with
list operators. In Scheme, there are a number of helper functions that can operate across the list. For example,

1 ]=> (define a ’("boston" "washington" "chicago" "pittsbu rgh"))
;Value: a
1 ]=> (map string-capitalize a)
;Value 2: ("Boston" "Washington" "Chicago" "Pittsburgh")

Notice how the second argument is the name of what you might ordinarily thing of as a function? This is one of
the most powerful ideas in Scheme: that functions are not syntactically different than anything else. The only way
functions (or compound procedures) differ is that they can be used to evaluate the rest of the list.

We can make store functions in lists along with data:

1 ]=> (define (complex-add z1 z2)
(list (+ (caar z1) (caar z2)) (+ (cadar z1) (cadar z2))))

;Value: complex-add
1 ]=> (define (add a1 a2) ((cadr a1) a1 a2))
;Value: add
1 ]=> (define c1 (list ’(1 2) complex-add))
;Value: c1
1 ]=> (define c2 (list ’(3 4) complex-add))
;Value: c2
1 ]=> (add c1 c2)
;Value 4: (4 6)

And thus object-oriented programming is born. We get polymorphism in that last function call; the add function looks
at the 2nd argument for the definition of how to add these data types.

1 ]=> (define (real-add z1 z2)
(list (+ (caar z1) (caar z2))))

;Value: complex-add
1 ]=> (define (add a1 a2) ((cadr a1) a1 a2))
;Value: add
1 ]=> (define r1 (list ’(1) real-add))
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;Value: c1
1 ]=> (define r2 (list ’(3) real-add))
;Value: c2
1 ]=> (add c1 c2)
;Value 4: (4)

5 Anonymous Functions

The preceding section described expressions that take functions as parameters, and we supplied the functions by
naming them, i.e., real-add, complex-add, capitalize, etc.. There are situations, however, we might only ever need a
function once, just to use it as an argument in some other expression. When you call quick-sort, for example, you
have to supply a comparator function that takes 2 parametersand returns true if the first term should come before the
second in the full ordering. If you are sorting a list of just numbers, then you can supply the> function, but if you are
sorting a list of some abstract data, then you need to supply afunction that can order the data appropriately, and often,
this is theonly time you would need such a function.

For example, suppose you were sorting a list of student records, and you wanted to sort on the last name, which was
the 3rd item in each student record list. You would have to write function that knew to callstring-compare on the
caddr each item. But, since it can be a pain to define a new function for every single-purpose use, scheme supports
the use of anonymous functions, using the special formlambda . Instead of usingreal-add to refer to our real
addition function, we can refer to it in the following way:

1 ]=> (lambda (z1 z2) (list (+ (caar z1) (caar z2))))
;Value 7: #[compound-procedure 7]

Of course, once we evaluated the lambda, the value is gone since we didn’t define a symbol to hold the procedure. But
we can use an anonymous function wherever we might use a namedfunction:

1 ]=> (define anon-c1 (list ’(1 2) (lambda (z1 z2)
(list (+ (caar z1) (caar z2)) (+ (cadar z1) (cadar z2))))))
;Value: anon-c1
1 ]=> (define anon-c2 (list ’(3 4) (lambda (z1 z2)
(list (+ (caar z1) (caar z2)) (+ (cadar z1) (cadar z2))))))
;Value: anon-c2
1 ]=> (add anon-c1 anon-c2)
;Value 4: (4 6)

This is unwieldy for multiple instances of the data, so we usually use named functions whenever we might use it more
than once. But, we can define a complex number quick-sort thatsorts numbers on their magnitude in the Argand plane:

(define (complex-sort l) (quick-sort l
(lambda (a b)

(< (+ (* (caar a) (caar a)) (* (cadar a) (cadar a)))
(+ (* (caar b) (caar b)) (* (cadar b) (cadar b)))))))

6 Doing something useful

This example is taken from the Structure and Interpretationof Computer Programs. We want to solve for square roots
using Newton’s Method. Given some number, we repeatedly guess at its square root, improving the guess over and
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over until some numerical accuracy is achieved. Let’s say our number is x, and our current guess is y. At each stept,
(iteration?), we improve our guess using

yt+1 =

{

1

2

(

yt + yt

x

)

: |y2
t − x| > ε

yt : otherwise
(1)

Notice two features. We have a conditional, and we have an iterative procedure. Let’s first define the improvement
step of Newton’s method:

(define (improve guess x)
(average guess (/ x guess)))

(define (average x y)
(/ (+ x y) 2))

Given a guess of5 for a square root of36, we get

1 ]=> (improve 5 36)
;Value: 61/10

which is much closer to
√

36 = 6 than5 was.

Let’s now define a test to see if we are within range of the desired numerical precision, of finding a square root ofx

that, when squared, is within .001 ofx:

(define (good-enough? guess x)
(< (abs (- (square guess) x)) 0.001))

1 ]=> (good-enough? (improve 5 36) 36)
;Value: ()

and we see the after improving 5 to61
10

, it’s still not good enough yet as it returned the empty list() rather than value
#t .

We define the iteration procedure using recursion: if thegood-enough? test fails, we callsqrt-iter again using
an improved guess.

(define (sqrt-iter guess x)
(cond ((good-enough? guess x) guess)

(else (sqrt-iter (improve guess x) x)))
)

We define a wrapper functionmy-sqrt that provides an initial guess.

(define (my-sqrt x)
(sqrt-iter 1.0 x))

And we can now find square roots.

1 ]=> (my-sqrt 36)
;Value: 6.000000005333189
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7 Doing something even more useful – Linear Regression

Let’s finally do something somewhat involved. Let’s generate some data from a noisy linear model, and then use linear
regression to recover the line parameters.

The equation of a line is of course
y = m · x + b (2)

Let’s assume our measurements ofy are corrupted with some Gaussian noisew :

p(w) =
1√

2 ∗ π ∗ σ2
e

−(x−µ)2

2σ2 (3)

Without going into the details of the mathematics (which canbe found in Luc Devroye. Non-uniform random
variate generation, Springer-Velag, New York, 1986.), we can sample a point from the domain(−∞,∞) according to
the distributionN (µ, σ2) using the following:

u ∼ uniform(0, 1.0] (4)

v ∼ uniform[0, 1.0) (5)

z =
√

−2 log u ·
√

cos 2πv (6)

x = µ + σ · z (7)

(define pi (* 4 (atan 1)))

(define (sample_gaussian mean variance)
(lambda ()

(define norm (/ 1.0 2.0))
(define u (- 1.0 (* (random 1.0) norm)))
(define v (* (random 1.0) norm))
(define z (* (sqrt (* -2.0 (log u))) (cos (* 2.0 pi v))))
(+ mean (* (sqrt variance) z)))

)

Let’s define a functiong that makes calls to oursample_gaussian function with mean0 and variance0.01. Let’s
also define a function for the line that returnsy = mx + b + g where g is a call to our sampling function.

(define (line m b noise) (lambda (t) (+ (* m t) b (noise))))

(define g (sample_gaussian 0 0.01))

(define l (line 2 .25 g))

Now let’s create an array of noisy line data evaluated from−1 to 1 in increments of0.01.

(define (create_vector start stop increment)
(if (> start stop) ’()

(cons (list start (l start))
(create_vector (+ start increment) stop increment))))

(define v (create_vector -1 1 0.01))
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At this point,v is a list of 2-item lists, where each pair of items is anx and ay co-ordinate.

Given our noisy line data, we can use linear regression to recover the parametersm andb:

b =

∑n

i=1
xi · yi − 1

n

∑n

i=1
xi −

∑n

i=1
yi

∑n

i=1
xi · xi − 1

n
(
∑n

i=1
xi)2

(8)

a =
n

∑

i=1

yi − b ·
n

∑

i=1

xi (9)

Let’s implement each of those terms separately as a functionthat takes in our array of data, and returns the appropriate
sum.

(define (sum-x m)
(if (eqv? m ’()) 0

(+ (caar m) (sum-x (cdr m)))))

(define (sum-y m)
(if (eqv? m ’()) 0

(+ (cadar m) (sum-y (cdr m)))))

(define (sum-sqd-x m)
(if (eqv? m ’()) 0

(+ (* (caar m) (caar m)) (sum-sqd-x (cdr m)))))

(define (sum-xy m)
(if (eqv? m ’()) 0

(+ (* (caar m) (cadar m)) (sum-xy (cdr m)))))

(define (b m) (/ (- (sum-xy m) (/ (* (sum-x m) (sum-y m)) (lengt h m)))
(- (sum-sqd-x m) (/ (* (sum-x m) (sum-x m)) (length m)))))

(define (mean-x m)
(/ (sum-x m) (length m)))

(define (mean-y m)
(/ (sum-y m) (length m)))

(define (a m) (- (mean-y m) (* (b m) (mean-x m))))

If we call a andb on the arrayv we should recover the original slope and intercept of our line.

We can plot these under Unix using the following commands.

(define xwin (make-graphics-device ’x))

(define (plot v)
(graphics-operation xwin ’fill-circle (car v) (cadr v) 0.0 1)
() )

(define (do-plot m)
(if (eqv? m ’()) ’()
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(begin (plot (car m)) (do-plot (cdr m)))))

(define (do-line m)
(graphics-draw-line xwin -1 (+ (a m) (* (b m) -1)) 1 (+ (a m) (* ( b m) 1))))

(do-plot v)

(do-line v)

I/O

The following subsection on Input/Output will not be required for any assignment in this class. It is given
for general interest, and some of this may help you in debugging your code. You will never need any of these
operators, especially the ones from SLIB, for assignments in this class.

Something that is often skipped over in Scheme tutorials andtextbooks is input and output. The simplest output
operator isdisplay , as in

1 ]=> (display "\nHello, World!\n")
Hello, World!

;Unspecified return value

If you want to get input from the user,read-line is probably what you want. For instance, to turn scheme into
string capitalizer (an odd thing to do, I suppose),

1 ]=> (define (capitalizer)
(begin (define string (read-line))

(cond ((not (string-null? string))
(begin (display (string-capitalize string))

(newline)
(capitalizer)))

(else ’()))))
1 ]=> (capitalizer)
hello world
Hello world
hello WORLD
Hello world
[hit return on a blank line to end]
;Value: ()

Something we haven’t talked about is loading into Scheme extra packages. There is a Scheme package called “SLIB”,
which you can download and install on your local machine, andwill give you lots of extra functionality such as text
parsing and printf’s of the sort you might be used to, as in:

1 ]=> (load "/home/local/lib/slib/mitscheme.init")
;Loading "/home/local/lib/slib/mitscheme.init"
;Loading "/usr/local/lib/slib/require.scm" -- done

-- done
;Unspecified return value
1 ]=> (require ’printf)
;Loading "/usr/local/lib/slib/printf.scm"
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;Loading "/usr/local/lib/slib/strcase.scm" -- done
-- done

;Value 3: "/usr/local/lib/slib/printf"
1 ]=> (printf "Hello there %s. %d! is %d\n" "Nick" 5 (factoria l 5))
Hello there Nick. 5! is 120
;Value: 28
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