Notes in Learning Scheme for 16.410 and 16.413

1 Resources

1. SCM Scheme manual
http://www.swiss.ai.mit.edu/"jaffer/r5rs_toc.html
http://www.swiss.ai.mit.edu/"jaffer/scm_toc
http://www.swiss.ai.mit.edu/"jaffer/SCM.html

2. Edwin References
http://sicp.ai.mit.edu/Spring-2003/edwin-info.html

3. The Structure and Interpretation of Computer Prograntd.bdbelson and G. Sussman with J. Sussman.
http://mitpress.mit.edu/sicp/full-text/book/book.ht ml

4. Secondary resources:

e Teach Yourself Scheme in Fixnum Days by Dorai Sitaram.
http://download.plt-scheme.org/doc/205/pdf/t-y-sche me.pdf

e SLIB
http://swissnet.ai.mit.edu/"jaffer/SLIB.html

2 Running Scheme

by Andreas Hoffman

Introduction

This jumpstart shows you the basics of getting Scheme dtamtening simple programs, simple editing and debug-
ging, and exiting out of Scheme. The jumpstart is orientectds Windows installations, but can be adapted for Unix
and other installations. Note that the Scheme installederl6.410 computer lab is the Windows version.

Please note that this jumpstart will give you only the mostimentary skills in Scheme. To get through the course,
you will have to obtain a bit more information. The Schemerww® reference manuals are excellent resources,
and are available as part of the Scheme installation; just glbe Windows Start menu, and select: Programs, MIT
Scheme, Documentation. Please see the course web page tot th the Scheme download site and the location and
hours of the course lab.

Hello World

Start the Scheme interpreter by going to the Windows stantnaed selecting: Programs, MIT Scheme, Scheme. At
the prompt, enter the following form:

1 ]=> (begin
(display "Hello, World!")
(newline))



The interpreter prints out
Hello, World
1=

The interpreter also prints out a message indicating "uriipd return value”. This is not an error message; it simply
states that the Scheme form you entered doesn’t return dmg.\v@ome forms return values, some don’t. Now, enter
the following form:

1 ]=> (begin
(display "Hello, World!")
(newline) 5)

Now, the interpreter indicates the returned value (5).d.exit Scheme (don’t worry, we’ll come back to it). To exit,
simply enter the form:

1 ]=> (exit)

Using Edwin

Edwin is the editor that comes with Scheme. Edwin is basedmads, and therefore, many of the keystroke combi-
nations in Edwin are the same as they are in Emacs. You doréttioause Edwin to edit Scheme programs (you could
do it in Wordpad, for example). However, you are highly erreged to learn the basics of using Edwin; it will save
you time later.

To start Edwin, go to the Windows Start menu, and select: arog, MIT Scheme, Edwin. This will bring up the
Edwin editor. Type in one of the previous sequence that wd tesgenerate the hello world message. Then, with the
cursor at the end of the form, use the keystroke combination

ctrl-x ctrl-e

to run the evaluator. Note that in the Scheme editor, forrasiat evaluated automatically.

Now, let's write a Scheme program and save it in a file. Ficsget a new buffer, do

ctrl-x ctrl-f

Edwin will prompt you for a path. Enter an appropriate path your directory, and end it with the file nhame
HelloWorld.scm . Scheme will indicate that this is a new file. Now, enter onehef previous hello world ex-
pressions into the new buffer. When done, do

ctrl-x ctrl-s

This saves the file. Next, do

ctrl-x b

This switches you back to the Edwin Scheme interpreter. lthadile HelloWorld.scm into the interpreter by
typing at the prompt

(load [path])

where [path] is the complete path that describes where thie\Merld.scm file is. Then datrl-x ctrl-e to
evaluate. Note that the result is the same as when this wed igirectly to the interpreter. Leave Edwin by doing
ctrl-x ctrl-c

3 Programming in Scheme

These notes are not intended to teach a novice programmemnecHhf you have no experience in programming, or
want to you should read the elegant “Structure and Intesipogt of Computer Programs”. But, if you want to get
started on 16.410/413 assignments in this crazy langulage the following might help.



In Matlab, we give instructions to an interpreter, and theyexecuted by the interpreter. A variable gets some value,
a string is printed to the screen, a window is opened, etch liae of code has some intended effect. In C, Java or
Ada, there is an intermediate step of compilation, so thecefff each line of code is delayed, but we again write the
code intending for each line to do something.

Scheme is different. 1 find it most useful to think of programgiin Scheme as, not so much giving instructions,
but asking questions of the Scheme interpreter. In priaciple intention of each line of code in Scheme is not to do
something, but to get an answer back. Think of the following bf Scheme code, entered at the prompt (the prompt
isthel ]=> thingy):

1]=>(*32
:Value: 6
1]=>

Such a line of code makes no sense in C:

#include <math.h>

int main(int argc, char *argv[])
{

3*2;
}

In C (or Ada, or Java), this only makes sense with the effegrrioiting it out, or storing it in a variable, or writing it
to file...:

#include <math.h>

int main(int argc, char *argv[]) {
printf("%d\n", 3*2);
}

Unlike other languages you may be used to, where each lined# is an instruction, everything in Scheme is a form
or expression that has a value. Scheme expressions come fortws: primitives that just have some value

6
and recursive expressions that are formed by an operata bstcbf arguments:
(operator argl arg2 arg3)

Lists are the basic (maybe the only) data structure in Sché&kgecan get more complicated expressions by nesting
lists within lists, but more on that later.

Some expressions are special in that they have side-efféarinting, or opening a file, or attaching a variable
name to the value of a particular expression, but it's imgoarto think less aboutoing instructions than it is about
evaluating expressions and getting a value back. This difference isatefl in how Scheme operates: the guts of the
Scheme interpreter is typically implemented using a “REadluate-Print” loop. The Scheme interpreter process the
prompt line (or an input file) one expression at a time, requttire expression, evaluating it, and returning the value of
that expression. That value might be a number we care abaiatovalue might be the result of defining a subroutine



(or function, or procedure, depending on what you are usedltmg them). If the value of the last expression is in
fact the result of defining a new subroutine, then you or | gt care about the specific details of that value: we are
not going to be able to interpret what Scheme gives us aftduating the definition of theqrt function the way we
can interpret the value ¢f 3 2) , but the definition of theqrt functionhas a value, and that value is useful to us
in performing tasks, even if we cannot actually examine tdaezand learn anything from it.

Of course, if the objective of every Scheme expression istagralue back, it's hard to get anything done as com-
plicated ideas need complicated expressions. We therafme operators that are “special”, in that they have side
effects.

Naming Values
The first thing we might want to do is to store values in vagabFor example,

1 ]=> (define name "Nick Roy")
;Value: name

Define is the first operator that has a side-effect. The valilkeodefine statement is the name of the newly-defined
thing, but (without explicitly saying so), Scheme has dtetthe name to the value. If | ask the interpreter what the
value ofnameis, it tells me:

1 ]=> name
;Value 6: "Nick Roy"

| can define a list of items:
1 ]=> (define | (1 2 3 4))

| can also define a list of items this way:
1 ]=> (define | (list 1 2 3 4))

The difference between these two expressions is¢tha? 3 4) does not take the value of each symbol, whereas
(list 1 2 3 4) does.

| can do math this way:

1 ]=> (define six (* 3 2))
;Value: six
1 ]=> six
;Value: 6

Notice thatsix evaluates to a useful value (as d@shut(six) does not, since lists are evaluated by taking the
value of the first symbol and using it as an operador. evaluates t@, which is not an operator. Operators are things
like *, -, concat , etc. And of coursejefine is an operator itself, anddefine  expression itself is a well-formed
list.

Naming Subroutines

Define is the general-purpose operator for attaching naogrigs. We use it to attach names to chunks of Scheme
code that can be evaluated.



1 ]=> (define (six-func) (* 3 2))
:Value: six-func

Here, I've definedsix-func  to be a function that, when evaluated, returns the expre¢sid 2) . Notice the
difference between

1 ]=> (define six-func (* 3 2))
;Value: six-func

1 ]=> six-func

;Value 6

and

1 ]=> (define (six-func) (* 3 2))

:Value: six-func

1 ]=> six-func

;Value 7: #[compound-procedure 7 six-func]

If I ask for six-func  to be evaluated (rather than asking for its value as | jugt digkt

1 ]=> (six-func)
:Value: 6

| have definedix-func  to evaluate t@ x 3, which is a function that doesn’t depend on anything elsanlaefine
a new function that multiplie by some number and calledtwo-times . When | evaluatéwo-times  on some
number, you might think of a similar process in C or Java alingph function (or method) calletivo-times  with
some number as a parameter. So,

1 ]=> (define (two-times n) (* 2 n))
is a lot like

double two-times(double n) {
return 2*n;

}

But, in Ada or Java, a function like two-times is a fundaméytdifferent beast than the number whereas in
Scheme, the difference is just the specific value that egesents. To the read-print-eval loop, it's perfectly dradi
calltwo-times  on itself:

1 ]=> (two-times two-times)

although when this is interpreted, the evaluator compltias the special symbdl can’'t be used with compound-
procedures (which is what Scheme calls functions, or prnaees] or chunks of Scheme code that we can refer to later).
There are other functions thate useful with compound-procedures, and that it makes pestatie to use a function
name liketwo-times  as a parameter as well as an operator.

The most powerful property of Scheme is how each operand ivaluation is passed to the evaluation. When an
expression is evaluated, the value of each item in the Igit/en to the operator. For instance, in the expression

1]=> (223
:Value: 6



2 and3 are the operands in the ligt 2 3) that are passed to the operatomwhich in this case multiplies them.
Each of those operands needs to have a value. If the operamtiisitive, such as a number, a string or a compound-
procedure definition, then that’s the value. If, howevee tiperand is an expression itself, then that expression is
evaluated.

1]=> (* 2 (* 3 4)
;Value: 24

The evaluation of operands is doa®needed. If | have a list of items that | want to preserve as a list (I tomant the
list to be evaluated), then | can protect it using a quotatiank. Examine the difference between

1 ]=> (define list-of-symbols '(* 3 2))
;Value: list-of-symbols

1 ]=> (define six (* 3 2))

;Value: six

1 ]=> list-of-symbols

;Value 12: (* 3 2)

1 ]=> six

;Value: 6

Understanding when to use an actual list, and when a lists#edoe evaluated, can be tricky.

Conditionals

Besides being able to abstract Scheme code using compaaoddures, we want to be able to control program flow.
For instance, we would like Scheme functions that respordtrnal input or generate different output depending on
different properties of the input. For instance, we migHtrdleamax operator that returns the maximum of two items.

We can use theond special form:

(cond (pred clause) (pred clause) ...
So we can define ounax as
(define (max a b)

(cond ((> a b) a)

(else b))

else is a special form within cond that always evaluates as trherd are a number of ways to combine tests, using
and, or , etc. Althoughcond has no side-effects, it is a special form because evaluafitime expression stops on
the first operand with a true predicate. (If it were not a spidorm, each predicate would be evaluated, which would

be ok although possibly inefficient, but each clause woud &le evaluated, which would be no good in situations
where clauses had side-effects and we only waabewf the side-effects to happen.

List Processing

As you must have realized, Scheme is very list-oriented. Ve lalready seen one way to create a list, or maybe you
prefer to think in terms of vectors:

(define v1 '(1 2 3 4))



This is Scheme short hand for an explicit operation to crésts
(define v2 (list 1 2 3 4))

We can extract items from the front of the list, using a opmratlled (for historical reasonspr , and we can get
everythingbut the front of the list usingdr .

]=> (car v1)

;Value: 1

]=> (cdr v1)

;Value 5: (2 3 4)

Scheme has a somewhat bizarre shorthand for compoaing andcdr s

1 ]=> (caddr v1)
:Value: 3

We can use the list operators to do things like take the datymioof two vectors.
1 ]=> (define (dot a b)
(if (or (null? a) (null? b)) O
(+ (* (car a) (car b)) (dot (cdr a) (cdr b)))))
;Value: dot

1 ]=> (dot vl v2)
;Value: 70

We can assembile lists using thgpend operator, which takes the elements of two or more lists aeates a new list
of those elements:

1 ]=> (append v1 v2)
Value 7: (1 2 3456 7 8)

You have to be careful to pass lists to append. This works:

1 ]=> (append '(* 3 2) '(* 4 5))
Value 11: (* 3 2 * 4 5)

but might not be what you want. This might be what you want:

1 ]=> (append (* 3 2) (* 4 9))
;The object 6, passed as an argument to append, is not a list.

but doesn’t work. This is probably what you want:

1 ]=> (append (list (* 3 2)) (list (* 4 5)))
;Value 12: (6 20)

Thecons operator takes a value and a list, and returns a newdiss tructed from the value and the list:

1 1]=> (cons (* 3 2) (list (* 4 5)))
;Value 12: (6 20)

Notice that the first element after the operator evaluatesvlue, not a list.



Iteration and Recursion

Iteration is something that can take a long time to get acoostl to in Scheme. There is no iteration operator (although
you can define one). Instead, doing something over and oaén &goften performed using recursion: a function (or
compound-procedure) calling itself with new parametersofmon example of recursion is the factorial function:

(define (factorial n)
(cond (= n 1) 1)
(else (* n (factorial (- n 1))))))

Notice how factorial calls itself with a parameter whoseugsis one less than whatever it was called with?

4 Functions as parameters

In addition to recursion, many things that you might be usadiing in C or Java within by iteration can be done with
list operators. In Scheme, there are a number of helperinecthat can operate across the list. For example,

1 ]=> (define a '("boston" "washington
;Value: a

1 ]=> (map string-capitalize a)

;Value 2: ("Boston" "Washington" "Chicago" "Pittsburgh™)

chicago" "pittsbu rgh"))

Notice how the second argument is the name of what you mighharily thing of as a function? This is one of
the most powerful ideas in Scheme: that functions are ndistinally different than anything else. The only way
functions (or compound procedures) differ is that they cansed to evaluate the rest of the list.

We can make store functions in lists along with data:

1 ]=> (define (complex-add zl z2)

(list (+ (caar zl) (caar z2)) (+ (cadar z1) (cadar z2))))
;Value: complex-add
1 ]=> (define (add al a2) ((cadr al) al a2))
;Value: add
1 ]=> (define c1 (list '(1 2) complex-add))
;Value: cl
1 ]=> (define c2 (list (3 4) complex-add))
;Value: c2
1 ]=> (add cl1 c2)
;Value 4: (4 6)

And thus object-oriented programming is born. We get polgghism in that last function call; the add function looks
at the 2nd argument for the definition of how to add these ggiest

1 ]=> (define (real-add z1 z2)

(list (+ (caar z1) (caar z2))))
;Value: complex-add
1 ]=> (define (add al a2) ((cadr al) al a2))
;Value: add
1 ]=> (define rl (list '(1) real-add))



;Value: cl

1 ]=> (define r2 (list '(3) real-add))
:Value: c2

1 ]=> (add cl c2)

;Value 4. (4)

5 Anonymous Functions

The preceding section described expressions that takeidnecas parameters, and we supplied the functions by
naming them, i.e., real-add, complex-add, capitalize, dthere are situations, however, we might only ever need a
function once, just to use it as an argument in some otheresgmm. When you call quick-sort, for example, you
have to supply a comparator function that takes 2 paramatetseturns true if the first term should come before the
second in the full ordering. If you are sorting a list of jusimbers, then you can supply thdunction, but if you are
sorting a list of some abstract data, then you need to supipiyction that can order the data appropriately, and often,
this is theonly time you would need such a function.

For example, suppose you were sorting a list of student ds¢@and you wanted to sort on the last name, which was
the 3rd item in each student record list. You would have téertinction that knew to cafitring-compare on the
caddr each item. But, since it can be a pain to define a new functioaviery single-purpose use, scheme supports
the use of anonymous functions, using the special fltanmbda . Instead of usingeal-add  to refer to our real
addition function, we can refer to it in the following way:

1 ]=> (lambda (z1 z2) (list (+ (caar z1) (caar z2))))
;Value 7: #[compound-procedure 7]

Of course, once we evaluated the lambda, the value is gooe si@ didn’t define a symbol to hold the procedure. But
we can use an anonymous function wherever we might use a namettbn:

1 ]=> (define anon-cl (list '(1 2) (lambda (z1 z2)

(list (+ (caar zl) (caar z2)) (+ (cadar z1) (cadar z2))))))
:Value: anon-cl

1 ]=> (define anon-c2 (list '(3 4) (lambda (z1 z2)

(list (+ (caar zl1) (caar z2)) (+ (cadar z1) (cadar z2))))))
;Value: anon-c2

1 ]=> (add anon-cl anon-c2)

;Value 4: (4 6)

This is unwieldy for multiple instances of the data, so wealigwuse named functions whenever we might use it more
than once. But, we can define a complex nhumber quick-sorstres numbers on their magnitude in the Argand plane:

(define (complex-sort 1) (quick-sort |
(lambda (a b)
(< (+ (* (caar a) (caar a)) (* (cadar a) (cadar a)))
(+ (* (caar b) (caar b)) (* (cadar b) (cadar b)))))))

6 Doing something useful

This example is taken from the Structure and Interpretaifd@omputer Programs. We want to solve for square roots
using Newton's Method. Given some number, we repeatedlggaeits square root, improving the guess over and



over until some numerical accuracy is achieved. Let's saynamber is X, and our current guess is y. At each step
(iteration?), we improve our guess using

st ) clyf -l >e
Yt+1 = . 1)
Yt : otherwise

Notice two features. We have a conditional, and we have aatite procedure. Let’s first define the improvement
step of Newton’s method:

(define (improve guess X)
(average guess (/ x guess)))

(define (average X )
( (+ xy) 2)

Given a guess df for a square root 036, we get

1 ]=> (improve 5 36)

:Value: 61/10

which is much closer te/36 = 6 than5 was.

Let's now define a test to see if we are within range of the ddsitumerical precision, of finding a square rootrof

that, when squared, is within .001 of

(define (good-enough? guess Xx)
(< (abs (- (square guess) x)) 0.001))

1 ]=> (good-enough? (improve 5 36) 36)
;Value: ()

and we see the after improving 5%, it's still not good enough yet as it returned the empty(jstrather than value
#t .

We define the iteration procedure using recursion: ifgbed-enough? test fails, we calkqrt-iter again using
an improved guess.

(define (sqrt-iter guess Xx)
(cond ((good-enough? guess x) guess)

(else (sgrt-iter (improve guess X) X)))

)

We define a wrapper functiamy-sqrt  that provides an initial guess.

(define (my-sqrt Xx)
(sqrt-iter 1.0 X))

And we can now find square roots.

1 ]=> (my-sqrt 36)
;Value: 6.000000005333189
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7 Doing something even more useful — Linear Regression

Let’s finally do something somewhat involved. Let’s generssdme data from a noisy linear model, and then use linear
regression to recover the line parameters.

The equation of a line is of course
y=m-x+b (2)

Let's assume our measurementgafre corrupted with some Gaussian naise

1 —(z—w?
W) = ——e 202 3
p(w) P 3)

Without going into the details of the mathematics (which é@nfound in Luc Devroye. Non-uniform random
variate generatigrSpringer-Velag, New York, 1986.), we can sample a poinhftbe domair(—oo, oo) according to

the distributionV (i1, 2) using the following:

u ~ uniform(0, 1.0] 4)
~ uniform[0, 1.0) (5)
= /—2logu - Vcos2mv (6)
r = pt+o-z 7

(define pi (* 4 (atan 1)))

(define (sample_gaussian mean variance)
(lambda ()
(define norm (/ 1.0 2.0))
(define u (- 1.0 (* (random 1.0) norm)))
(define v (* (random 1.0) norm))
(define z (* (sgrt (* -2.0 (log u))) (cos (* 2.0 pi Vv))))
(+ mean (* (sqgrt variance) z)))

)

Let's define a functiomy that makes calls to owwample_gaussian  function with meard and variancé®.01. Let's
also define a function for the line that retumns= ma 4 b + g where g is a call to our sampling function.

(define (line m b noise) (lambda (t) (+ (* m t) b (noise))))
(define g (sample_gaussian 0 0.01))

(define | (line 2 .25 @))

Now let's create an array of noisy line data evaluated frotrto 1 in increments 0f).01.
(define (create_vector start stop increment)
(if (> start stop) ()
(cons (list start (I start))
(create_vector (+ start increment) stop increment))))

(define v (create_vector -1 1 0.01))

11



At this point,v is a list of 2-item lists, where each pair of items isaaand ay co-ordinate.

Given our noisy line data, we can use linear regression mvezdhe parameters andb:

1
b = D T Y~ iy i Sy @

21;1 L~ Lj — %(21:1 zi)z
a = Zyi—b'zwi 9)
=1 i=1

Let's implement each of those terms separately as a funtitadriakes in our array of data, and returns the appropriate
sum.

(define (sum-x m)
(if (eqv? m () O
(+ (caar m) (sum-x (cdr m)))))

(define (sum-y m)
(if (eqv? m () O
(+ (cadar m) (sum-y (cdr m)))))

(define (sum-sqd-x m)
(if (equ? m () O
(+ (* (caar m) (caar m)) (sum-sqd-x (cdr m)))))
(define (sum-xy m)
(if (eqv? m ’()) O
(+ (* (caar m) (cadar m)) (sum-xy (cdr m)))))

(define (b m) (/ (- (sum-xy m) (/ (* (sum-x m) (sum-y m)) (lengt h m)))
(- (sum-sqd-x m) (/ (* (sum-x m) (sum-x m)) (length m)))))

(define (mean-x m)
(/ (sum-x m) (length m)))

(define (mean-y m)
(/ (sum-y m) (length m)))

(define (@ m) (- (mean-y m) (* (b m) (mean-x m))))

If we call a andb on the array we should recover the original slope and intercept of ow.lin

We can plot these under Unix using the following commands.
(define xwin (make-graphics-device 'x))

(define (plot v)
(graphics-operation xwin ‘fill-circle (car v) (cadr v) 0.0 1)

0)

(define (do-plot m)
(it (eqv? m () "0

12



(begin (plot (car m)) (do-plot (cdr m)))))

(define (do-line m)
(graphics-draw-line xwin -1 (+ (@ m) (* (b m) -1)) 1 (+ (a m) (* ( b m) 1))

(do-plot v)

(do-line v)

1/O

The following subsection on Input/Output will not be required for any assignment in this class. It is given
for general interest, and some of this may help you in debuggg your code. You will never need any of these
operators, especially the ones from SLIB, for assignmentsithis class.

Something that is often skipped over in Scheme tutorialstartbooks is input and output. The simplest output
operator idisplay , asin

1 ]=> (display "\nHello, World!\n")
Hello, World!
;Unspecified return value

If you want to get input from the useread-line is probably what you want. For instance, to turn scheme into
string capitalizer (an odd thing to do, | suppose),

1 ]=> (define (capitalizer)
(begin (define string (read-line))
(cond ((not (string-null? string))
(begin (display (string-capitalize string))
(newline)
(capitalizer)))
(else "())))
1 ]=> (capitalizer)
hello world
Hello world
hello WORLD
Hello world
[hit return on a blank line to end]
;Value: ()

Something we haven't talked about is loading into Schemeagdckages. There is a Scheme package called “SLIB”,
which you can download and install on your local machine, ailidgive you lots of extra functionality such as text
parsing and printf’s of the sort you might be used to, as in:

1 ]=> (load "/home/local/lib/slib/mitscheme.init")
;Loading "/home/local/lib/slib/mitscheme.init"
;Loading "/usr/local/lib/slib/require.scm” -- done
-- done

;Unspecified return value

1 ]=> (require ’printf)

;Loading "/usr/local/lib/slib/printf.scm"”
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;Loading "/usr/local/lib/slib/strcase.scm" -- done

-- done

;Value 3: "/usr/local/lib/slib/printf"

1 ]=> (printf "Hello there %s. %d! is %d\n" "Nick" 5 (factoria I 5))

Hello there Nick. 5! is 120
:Value: 28
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