16.682: Communication Systems Engineering

Lecture 14: Channel Coding

April 5, 2001

Eytan Modiano

Channel Coding

- When transmitting over a noisy channel, some of the bits are received with errors

Example: Binary Symmetric Channel (BSC)

$\mathrm{Pe}=$ Probability of error

- Q: How can these errors be removed?
- A: Coding: the addition of redundant bits that help us determine what was sent with greater accuracy

Example (Repetition code)

Repeat each bit n times (n -odd)

Input	Code
0	$000 \ldots \ldots . .0$
1	$11 \ldots \ldots . .1$

Decoder:

- If received sequence contains $\mathrm{n} / 2$ or more 1 's decode as a 1 and 0 otherwise
- Max likelihood decoding

$$
\begin{aligned}
\mathbf{P}(\text { error } \mid 1 \text { sent }) & =\mathbf{P}(\text { error } \mid 0 \text { sent }) \\
& =\mathbf{P}[\text { more than } \mathbf{n} / \mathbf{2} \text { bit errors occur }] \\
& =\sum_{i=\lceil n / 2\rceil}^{n}\binom{n}{i} P_{e}^{i}\left(1-P_{e}\right)^{n-i}
\end{aligned}
$$

Repetition code, cont.

- For $P_{e}<1 / 2, P(e r r o r)$ is decreasing in n
$-\quad \Rightarrow$ for any $\varepsilon, \exists \mathbf{n}$ large enough so that \mathbf{P} (error) $<\varepsilon$
Code Rate: ratio of data bits to transmitted bits
- For the repetition code $R=1 / n$
- To send one data bit, must transmit n channel bits "bandwidth expansion"
- In general, an (\mathbf{n}, \mathbf{k}) code uses \mathbf{n} channel bits to transmit k data bits
- Code rate $R=k / n$
- Goal: for a desired error probability, ε, find the highest rate code that can achieve p (error) $<\varepsilon$

Channel Capacity

- The capacity of a discrete memoryless channel is given by,

$$
C=\max _{p(x)} I(X ; Y)
$$

Example: Binary Symmetric Channel (BSC)

$I(X ; Y)=H(Y)-H(Y \mid X)=H(X)-H(X \mid Y)$
$H(X \mid Y)=H(X \mid Y=0)^{\star} P(Y=0)+H(X \mid Y=1)^{*} P(Y=1)$
$H(X \mid Y=0)=H(X \mid Y=1)=P_{e} \log \left(1 / P_{e}\right)+\left(1-P_{e}\right) \log \left(1 / 1-P_{e}\right)=H_{b}\left(P_{e}\right)$
$H(X \mid Y)=H_{b}\left(P_{e}\right)=>I(X ; Y)=H(X)-H_{b}\left(P_{e}\right)$
$H(X)=P_{0} \log \left(1 / P_{0}\right)+\left(1-P_{0}\right) \log \left(1 / 1-P_{0}\right)=H_{b}\left(p_{0}\right)$
$=>I(X ; Y)=H_{b}\left(P_{0}\right)-H_{b}\left(P_{e}\right)$

Capacity of BSC

$$
I(X ; Y)=H_{b}\left(P_{0}\right)-H_{b}\left(P_{e}\right)
$$

- $H_{b}(P)=P \log (1 / P)+(1-P) \log (1 / 1-P)$
$-H_{b}(P)<=1$ with equality if $P=1 / 2$
$\mathrm{C}=\max _{\mathrm{P} 0}\left\{\mathrm{I}(\mathrm{X} ; \mathrm{Y})=\mathrm{H}_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{o}}\right)-\mathrm{H}_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{e}}\right)\right\}=1-\mathrm{H}_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{e}}\right)$

$$
C=0 \text { when } P_{e}=1 / 2 \text { and } C=1 \text { when } P_{e}=0 \text { or } P_{e}=1
$$

Channel Coding Theorem (Claude Shannon)

Theorem: For all $\mathbf{R}<\mathrm{C}$ and $\varepsilon>0$; there exists a code of rate \mathbf{R} whose error probability $<\varepsilon$

- $\quad \varepsilon$ can be arbitrarily small
- Proof uses large block size n
as $\mathbf{n} \rightarrow \infty$ capacity is achieved
- In practice codes that achieve capacity are difficult to find
- The goal is to find a code that comes as close as possible to achieving capacity
- Converse of Coding Theorem:
- For all codes of rate $\mathbf{R}>\mathbf{C}, \exists \varepsilon_{0}>0$, such that the probability of error is always greater than ε_{0}

For code rates greater than capacity, the probability of error is bounded away from 0

Channel Coding

- Block diagram

Approaches to coding

- Block Codes
- Data is broken up into blocks of equal length
- Each block is "mapped" onto a larger block

Example: $(6,3)$ code, $n=6, k=3, R=1 / 2$

```
000->000000 100 -> 100101
001 ->001011 101 -> 101110
010->010111 110 -> 110010
011 ->011100 111 -> 111001
```

- An (n, k) binary block code is a collection of 2^{k} binary n-tuples ($n>k$)
- $n=$ block length
- $\quad k=$ number of data bits
- n - $k=$ number of checked bits
- \quad R = $k / n=$ code rate

Approaches to coding

- Convolutional Codes
- The output is provided by looking at a sliding window of input

Block Codes

- A block code is systematic if every codeword can be broken into a data part and a redundant part
- Previous $(6,3)$ code was systematic

Definitions:

- Given $X \in\{0,1\}^{n}$, the Hamming Weight of X is the number of 1 's in X
- Given X, Y in $\{0,1\}^{n}$, the Hamming Distance between $X \& Y$ is the number of places in which they differ,

$$
\begin{aligned}
& d_{H}(X, Y)=\sum_{i=1}^{n} X_{i} \oplus Y_{i}=\operatorname{Weight}(X+Y) \\
& X+Y=\left[x_{1} \oplus y_{1}, x_{2} \oplus y_{2}, \cdots, x_{n} \oplus y_{n}\right]
\end{aligned}
$$

- The minimum distance of a code is the Hamming Distance between the two closest codewords:

$$
\begin{gathered}
\mathrm{d}_{\text {min }}={\min \left\{\mathrm{d}_{\mathrm{H}}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)\right\}}^{\mathrm{C}_{1}, \mathrm{C}_{2} \in \mathrm{C}}
\end{gathered}
$$

Decoding

- r may not equal to u due to transmission errors
- Given r how do we know which codeword was sent?

Maximum likelihood Decoding:
Map the received n-tuple r into the codeword C that maximizes, P \{ r|C was transmitted \}

Minimum Distance Decoding (nearest neighbor)
Map r to the codeword C such that the hamming distance between r and C is minimized (l.e., $\min d_{H}(r, C)$)
\Rightarrow For most channels Min Distance Decoding is the same as Max likelihood decoding

Linear Block Codes

- A (n, k) linear block code (LBC) is defined by 2^{k} codewords of length \mathbf{n}

$$
C=\left\{C_{1} \ldots C_{m}\right\}
$$

- $A(n, k)$ LBC is a K-dimensional subspace of $\{0,1\}^{n}$
- ($0 . . .0$) is always a codeword
- If $\mathrm{C}_{1}, \mathrm{C}_{2} \in \mathrm{C}, \mathrm{C}_{\mathbf{1}}+\mathrm{C}_{\mathbf{2}} \in \mathrm{C}$
- Theorem: For a LBC the minimum distance is equal to the min weight $\left(W_{\text {min }}\right)$ of the code

$$
\mathrm{W}_{\text {min }}=\min _{\text {(over all } \left.\mathrm{C}_{\mathrm{i}}\right)} \text { Weight }\left(\mathrm{C}_{\mathrm{i}}\right)
$$

Proof: Suppose $d_{\text {min }}=d_{H}\left(C_{i}, C_{j}\right)$, where $C_{1}, C_{2} \in C$
$d_{H}\left(C_{i}, C_{j}\right)=$ Weight $\left(C_{i}+C_{j}\right)$,
but since C is a LBC then $C_{i}+C_{j}$ is also a codeword

Systematic codes

Theorem: Any (n, k) LBC can be represented in Systematic form where: data $=x_{1} . . x_{k}$, codeword $=x_{1} . . x_{k} c_{k+1} . . x_{n}$

- Hence we will restrict our discussion to systematic codes only
- The codewords corresponding to the information sequences: $e_{1}=(1,0, . .0), e_{2}=(0,1,0 . .0), e_{k}=(0,0, . ., 1)$ for a basis for the code
- Clearly, they are linearly independent
- K linearly independent n-tuples completely define the K dimensional subspace that forms the code

Information sequence

$$
\begin{aligned}
& e_{1}=(1,0, . .0) \\
& e_{2}=(0,1,0 . .0) \\
& e_{k}=(0,0, . ., 1)
\end{aligned}
$$

Codeword

$$
\begin{aligned}
& g_{1}=\left(1,0, \ldots, 0, g_{(1, k+1)} \cdots g_{(1, n)}\right) \\
& g_{2}=\left(0,1, . ., 0, g_{(2, k+1)} \cdots g_{(2, n)}\right) \\
& g_{k}=\left(0,0, \ldots, k, g_{(k, k+1)} \cdots g_{(k, n)}\right)
\end{aligned}
$$

The Generator Matrix

$$
G=\left\lfloor\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{k}
\end{array}\right\rfloor=\left\lfloor\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
g_{21} & & & g_{2 n} \\
\vdots & & & \\
g_{k 1} & & & g_{k n}
\end{array}\right\rfloor
$$

- For input sequence $x=\left(x_{1}, \ldots, x_{k}\right): C_{x}=x G$
- Every codeword is a linear combination of the rows of G
- The codeword corresponding to every input sequence can be derived from G
- Since any input can be represented as a linear combination of the basis ($e_{1}, e_{2}, \ldots, e_{k}$), every corresponding codeword can be represented as a linear combination of the corresponding rows of G
- Note: $x_{1} \leftrightarrow C_{1}, x_{2} \leftrightarrow C_{2}=>x_{1}+x_{2} \leftrightarrow C_{1}+C_{2}$

Example

- Consider the $(6,3)$ code from earlier:

$$
\begin{aligned}
& 100 \rightarrow \mathbf{1 0 0 1 0 1 ;} \mathbf{0 1 0} \rightarrow \mathbf{0 1 0 1 1 1 ; ~} \mathbf{0 0 1} \rightarrow \mathbf{0 0 1 0 1 1} \\
& G=\left\lfloor\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right\rfloor
\end{aligned}
$$

Codeword for $(1,0,1)=(1,0,1) G=(1,0,1,1,1,0)$

$$
\begin{aligned}
& G=\left\lfloor\begin{array}{ll}
& \\
I_{K} & P_{K x(n-K)} \\
\\
\mathrm{I}_{\mathrm{K}} & =\mathrm{KxK} \text { identity matrix }
\end{array}\right.
\end{aligned}
$$

The parity check matrix

$$
\begin{gathered}
H=\left\lfloor\begin{array}{c|c}
& \\
P^{T} & \\
& I_{(n-K)} \\
& \\
\mathrm{I}_{(\mathrm{n}-\mathrm{K})} & =(n-\mathrm{K}) \mathrm{x}(\mathrm{n}-\mathrm{K}) \text { identity matrix }
\end{array}\right.
\end{gathered}
$$

Example:

$$
H=\left\lfloor\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1
\end{array}\right\rfloor
$$

Now, if c_{i} is a codework of C then, $\quad c_{i} H^{T}=\overrightarrow{0}$

- "C is in the null space of H "
- Any codeword in C is orthogonal to the rows of H

Decoding

- $\mathbf{v}=$ transmitted codeword $=\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$
- $r=$ received codeword $=r_{1} \ldots r_{n}$
- $e=$ error pattern $=e_{1} \ldots e_{n}$
- $\mathbf{r}=\mathbf{V}+\mathbf{e}$
- $\quad \mathbf{S}=\mathbf{r H}^{\top}=$ Syndrome of \mathbf{r}

$$
=(v+e) H^{\top}=v H^{\top}+e H^{\top}=e H^{\top}
$$

- S is equal to ' 0 ' if and only if $e \in C$
- l.e., error pattern is a codeword
- $\mathbf{S} \neq 0$ => error detected
- $\mathrm{S}=0=>$ no errors detected (they may have occurred and not detected)
- Suppose $\mathbf{S} \neq 0$, how can we know what was the actual transmitted

Syndrome decoding

- Many error patterns may have created the same syndrome

For error pattern $\mathrm{e}_{0}=>\mathrm{S}_{0}=\mathrm{e}_{0} \mathrm{H}^{\top}$
Consider error pattern $\mathrm{e}_{0}+\mathrm{c}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{i}} \in \mathrm{C}\right)$

$$
S_{0}^{\prime}=\left(e_{0}+c_{i}\right) H^{\top}=e_{0} H^{\top}+c_{i} H^{\top}=e_{0} H^{\top}=S_{0}
$$

- So, for a given error pattern, e_{0}, all other error patterns that can be expressed as $e_{0}+c_{i}$ for some $c_{i} \in C$ are also error patterns with the same syndrome
- For a given syndrome, we can not tell which error pattern actually occurred, but the most likely is the one with minimum weight
- Minimum distance decoding
- For a given syndrome, find the error pattern of minimum weight $\left(e_{\text {min }}\right)$ that gives this syndrome and decode: $r^{\prime}=r+e_{\text {min }}$

Standard Array

- Row 1 consists of all M codewords
- Row $2 e_{1}=$ min weight n-tuple not in the array
- I.e., the minimum weight error pattern
- Row $\mathrm{i}, \mathrm{e}_{\mathrm{i}}=$ min weight n -tuple not in the array
- All elements of any row have the same syndrome
- Elements of a row are called "co-sets"
- The first element of each row is the minimum weight error pattern with that syndrome
- Called "co-set leader"

Decoding algorithm

- Receive vector r

1) Find $S=\mathrm{rH}^{\top}=$ syndrome of r
2) Find the co-set leader e, corresponding to S
3) Decode: C = r+e

- "Minimum distance decoding"
- Decode into the codeword that is closest to the received sequence

Example (syndrome decoding)

- Simple $(4,2)$ code

$$
G=\left\lfloor\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right\rfloor
$$

Data codeword

00	0000
01	0101
10	1010
11	1111

$$
H=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \quad H^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Standard array	0000	0101	1010	1111	Syndrome
	1000	1101	0010	0111	10
	0100	0001	1110	1011	01
	1100	1001	0110	0011	11

Suppose 0111 is received, $\mathrm{S}=10$, co-set leader $=1000$

$$
\text { Decode: } \quad C=0111+1000=1111
$$

Minimum distance decoding

- Minimum distance decoding maps a received sequence onto the nearest codeword
- If an error pattern maps the sent codeword onto another valid codeword, that error will be undetected (e.g., e3)
- Any error pattern that is equal to a codeword will result in undetected errors
- If an error pattern maps the sent sequence onto the sphere of another codeword, it will be incorrectly decoded (e.g., e2)

Performance of Block Codes

- Error detection: Compute syndrome, $\mathbf{S} \neq 0$ => error detected
- Request retransmission
- Used in packet networks
- A linear block code will detect all error patterns that are not codewords
- Error correction: Syndrome decoding
- All error patterns of weight $<\mathrm{d}_{\text {min }} \mathbf{2}$ will be correctly decoded
- This is why it is important to design codes with large minimum distance ($\mathrm{d}_{\text {min }}$)
- The larger the minimum distance the smaller the probability of incorrect decoding

Hamming Codes

- Linear block code capable of correcting single errors
- $\quad n=2^{m}-1, k=2^{m}-1-m$
(e.g., $(3,1),(7,4),(15,11) . .$.
- $R=1-m /\left(2^{m}-1\right)=>$ very high rate
- $d_{\text {min }}=3$ => single error correction
- Construction of Hamming codes
- Parity check matrix (H) consists of all non-zero binary m-tuples

Example: $(7,4)$ hamming code $(\mathrm{m}=3)$

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right], \quad G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

