16.682: Communication Systems Engineering

Lecture 14: Channel Coding

April 5, 2001

Eytan Modiano

Channel Coding

When transmitting over a noisy channel, some of the bits are received with errors

Example: Binary Symmetric Channel (BSC)

- Q: How can these errors be removed?
- A: Coding: the addition of redundant bits that help us determine what was sent with greater accuracy

Example (Repetition code)

Repeat each bit n times (n-odd)

Input	Code		
0	0000		
1	111		

Decoder:

- If received sequence contains n/2 or more 1's decode as a 1 and 0 otherwise
 - Max likelihood decoding

P (error | 1 sent) = P (error | 0 sent)
= P[more than n / 2 bit errors occur]
=
$$\sum_{i=\lceil n/2 \rceil}^{n} \binom{n}{i} P_e^i (1 - P_e)^{n-i}$$

Repetition code, cont.

- For P_e < 1/2, P(error) is decreasing in n
 - **▶** for any **e**, \$ n large enough so that P (error) < e

Code Rate: ratio of data bits to transmitted bits

- For the repetition code R = 1/n
- To send one data bit, must transmit n channel bits "bandwidth expansion"
- In general, an (n,k) code uses n channel bits to transmit k data bits
 - Code rate R = k / n
- Goal: for a desired error probability, **e**, find the highest rate code that can achieve p(error) < **e**

Channel Capacity

The capacity of a discrete memoryless channel is given by,

$$C = \max_{p(x)} I(X;Y)$$
 X — Channel Y

Example: Binary Symmetric Channel (BSC)

$$P_0$$
 0 1-Pe 0 $P_1 = 1 - P_0$ 1 P_0 1-Pe 1

$$\begin{split} I(X;Y) &= H \ (Y) - H \ (Y|X) = H \ (X) - H \ (X|Y) \\ H \ (X|Y) &= H \ (X|Y=0)^* P(Y=0) + H \ (X|Y=1)^* P(Y=1) \\ H \ (X|Y=0) &= H \ (X|Y=1) = P_e log(1/P_e) + (1-P_e) log(1/1-P_e) = H_b(P_e) \\ H \ (X|Y) &= H_b(P_e) => I(X;Y) = H(X) - H_b(P_e) \\ H \ (X) &= P_0 log \ (1/P_0) + (1-P_0) log \ (1/1-P_0) = H_b(P_0) \end{split}$$

$$=> I(X;Y) = H_b(P_0) - H_b(P_e)$$

Capacity of BSC

$$I(X;Y) = H_b(P_0) - H_b(P_e)$$

- H_b(P) = P log(1/P) + (1-P) log(1/ 1-P)
 H_b(P) <= 1 with equality if P=1/2
- $C = \max_{P_0} \{I(X;Y) = H_b(P_0) H_b(P_e)\} = 1 H_b(P_e)$

C = 0 when $P_e = 1/2$ and C = 1 when $P_e = 0$ or $P_e = 1$

Channel Coding Theorem (Claude Shannon)

Theorem: For all R < C and e > o; there exists a code of rate R whose error probability < e

- e can be arbitrarily small
- Proof uses large block size n

as n ®¥ capacity is achieved

- In practice codes that achieve capacity are difficult to find
 - The goal is to find a code that comes as close as possible to achieving capacity
- Converse of Coding Theorem:
 - For all codes of rate R > C, \mathbf{e}_0 > 0, such that the probability of error is always greater than \mathbf{e}_0

For code rates greater than capacity, the probability of error is bounded away from 0

Channel Coding

Block diagram

Approaches to coding

Block Codes

- Data is broken up into blocks of equal length
- Each block is "mapped" onto a larger block

___Example: (6,3) code, n = 6, k = 3, R = 1/2

000 ® 000000	100 ® 100101
001 ® 001011	101 ® 101110
010 ® 010111	110 ® 110010
011 ® 011100	111 ® 111001

- An (n,k) binary block code is a collection of 2^k binary n-tuples (n>k)
 - n = block length
 - k = number of data bits
 - n-k = number of checked bits
 - R = k / n = code rate

Approaches to coding

- Convolutional Codes
 - The output is provided by looking at a sliding window of input

$$C_{(2K)} = U_{(2K)} \oplus U_{(2K-2)}, \quad C_{(2K+1)} = U_{(2K+1)} \oplus U_{(2K)} \oplus U_{(2K-1)}$$

+ mod(2) addition (1+1=0)

Block Codes

- A block code is systematic if every codeword can be broken into a data part and a redundant part
 - Previous (6,3) code was systematic

Definitions:

- Given $X \hat{I} \{0,1\}^n$, the <u>Hamming Weight</u> of X is the number of 1's in X
- Given X, Y in {0,1}ⁿ, the <u>Hamming Distance</u> between X & Y is the number of places in which they differ,

$$d_{H}(X,Y) = \sum_{i=1}^{n} X_{i} \oplus Y_{i} = Weight(X+Y)$$
$$X + Y = [x_{1} \oplus y_{1}, x_{2} \oplus y_{2}, \dots, x_{n} \oplus y_{n}]$$

• The <u>minimum distance</u> of a code is the Hamming Distance between the two closest codewords:

$$d_{min} = min \{d_H (C_1, C_2)\}$$

$$C_1, C_2 \widehat{\mathbf{I}} C$$

Decoding

- r may not equal to u due to transmission errors
- Given r how do we know which codeword was sent?

Maximum likelihood Decoding:

Map the received n-tuple r into the codeword C that maximizes, $P \{ r \mid C \text{ was transmitted } \}$

Minimum Distance Decoding (nearest neighbor)

Map r to the codeword C such that the hamming distance between r and C is minimized (I.e., min d_H (r,C))

Þ For most channels Min Distance Decoding is the same as Max likelihood decoding

Linear Block Codes

 A (n,k) linear block code (LBC) is defined by 2^k codewords of length n

$$C = \{ C_1 C_m \}$$

- A (n,k) LBC is a K-dimensional subspace of {0,1}ⁿ
 - (0...0) is always a codeword
 - If $C_1, C_2 \hat{\mathbf{I}}$ C, $C_1+C_2 \hat{\mathbf{I}}$ C
- Theorem: For a LBC the minimum distance is equal to the min weight (W_{min}) of the code

$$W_{min} = min_{(over all Ci)} Weight (C_i)$$

<u>Proof</u>: Suppose $d_{min} = d_H (C_i, C_j)$, where $C_1, C_2 \hat{I}$ C

$$d_H(C_i,C_j)$$
 = Weight $(C_i + C_j)$,
but since C is a LBC then $C_i + C_j$ is also a codeword

Systematic codes

Theorem: Any (n,k) LBC can be represented in Systematic form where: data = $x_1...x_k$, codeword = $x_1...x_k$ $c_{k+1}...x_n$

- Hence we will restrict our discussion to systematic codes only
- The codewords corresponding to the information sequences: $e_1 = (1,0,...0)$, $e_2 = (0,1,0...0)$, $e_k = (0,0,...,1)$ for a basis for the code
 - Clearly, they are linearly independent
 - K linearly independent n-tuples completely define the K dimensional subspace that forms the code

Information sequenceCodeword $e_1 = (1,0,...0)$ $g_1 = (1,0,...,0, g_{(1,k+1)}....g_{(1,n)})$ $e_2 = (0,1,0...0)$ $g_2 = (0,1,...,0, g_{(2,k+1)}....g_{(2,n)})$ $e_k = (0,0,...,1)$ $g_k = (0,0,...,k, g_{(k,k+1)}....g_{(k,n)})$

 $g_1, g_2, ..., g_k$ form a basis for the code

The Generator Matrix

$$G = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_k \end{bmatrix} = \begin{bmatrix} g_{11} & g_{12} & \cdots & g_{1n} \\ g_{21} & & & & & & & & & \\ \vdots & & & & & & & & \\ g_{k1} & & & & & & & & & \\ g_{kn} & & & & & & & & & \end{bmatrix}$$

- For input sequence $x = (x_1, ..., x_k)$: $C_x = xG$
 - Every codeword is a linear combination of the rows of G
 - The codeword corresponding to every input sequence can be derived from G
 - Since any input can be represented as a linear combination of the basis $(e_1,e_2,...,e_k)$, every corresponding codeword can be represented as a linear combination of the corresponding rows of G
- Note: $x_1 \leftrightarrow C_1$, $x_2 \leftrightarrow C_2 => x_1+x_2 \leftrightarrow C_1+C_2$

Example

Consider the (6,3) code from earlier:

100 ® 100101; 010 ® 010111; 001 ® 001011

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Codeword for (1,0,1) = (1,0,1)G = (1,0,1,1,1,0)

$$G = \begin{bmatrix} I_K & P_{Kx(n-K)} \end{bmatrix}$$

 $I_K = KxK$ identity matrix

The parity check matrix

$$H = \begin{bmatrix} P^T & I_{(n-K)} \end{bmatrix}$$

 $I_{(n-K)} = (n-K)x(n-K)$ identity matrix

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Now, if c_i is a codework of C then, $c_i H^T = \vec{0}$

- "C is in the null space of H"
- Any codeword in C is orthogonal to the rows of H

Decoding

- $v = transmitted codeword = v_1 ... v_n$
- $r = received codeword = r_1 \dots r_n$
- e = error pattern = e₁... e_n
- r = v + e
- $S = rH^T = Syndrome of r$ = $(v+e)H^T = vH^T + eH^T = eH^T$
- S is equal to '0' if and only if e Î C
 - I.e., error pattern is a codeword
- S 1 0 => error detected
- S = 0 => no errors detected (they may have occurred and not detected)
- Suppose S ¹ 0, how can we know what was the actual transmitted codeword?

Syndrome decoding

• Many error patterns may have created the same syndrome For error pattern $e_0 \Rightarrow S_0 = e_0 H^T$

Consider error pattern $e_0 + c_i (c_i \hat{\mathbf{I}} C)$

$$S'_0 = (e_0 + c_{ij})H^T = e_0 H^T + c_i H^T = e_0 H^T = S_0$$

- So, for a given error pattern, e_0 , all other error patterns that can be expressed as $e_0 + c_i$ for some c_i $\hat{\mathbf{I}}$ C are also error patterns with the same syndrome
- For a given syndrome, we can not tell which error pattern actually occurred, but the most likely is the one with minimum weight
 - Minimum distance decoding
- For a given syndrome, find the error pattern of minimum weight (e_{min}) that gives this syndrome and decode: $r' = r + e_{min}$

Standard Array

- Row 1 consists of all M codewords
- Row 2 e₁ = min weight n-tuple not in the array
 - I.e., the minimum weight error pattern
- Row i, e_i = min weight n-tuple not in the array
- All elements of any row have the same syndrome
 - Elements of a row are called "co-sets"
- The first element of each row is the minimum weight error pattern with that syndrome
 - Called "co-set leader"

Decoding algorithm

- Receive vector r
- 1) Find $S = rH^T = syndrome of r$
- 2) Find the co-set leader e, corresponding to S
- 3) Decode: C = r + e
- "Minimum distance decoding"
 - Decode into the codeword that is closest to the received sequence

Example (syndrome decoding)

• Simple (4,2) code

$$G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

<u>Data</u>	codeword		
00	0000		
01	0101		
10	1010		
11	1111		

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad H^{T} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Standard array	0000	0101	1010	1111	Syndrome
	1000	1101	0010	0111	10
	0100	0001	1110	1011	01
	1100	1001	0110	0011	11

Suppose 0111 is received, S = 10, co-set leader = 1000

Decode: C = 0111 + 1000 = 1111

Minimum distance decoding

- Minimum distance decoding maps a received sequence onto the nearest codeword
- If an error pattern maps the sent codeword onto another valid codeword, that error will be undetected (e.g., e3)
 - Any error pattern that is equal to a codeword will result in undetected errors
- If an error pattern maps the sent sequence onto the sphere of another codeword, it will be incorrectly decoded (e.g., e2)

Performance of Block Codes

- Error detection: Compute syndrome, S 1 0 => error detected
 - Request retransmission
 - Used in packet networks
- A linear block code will detect all error patterns that are not codewords
- Error correction: Syndrome decoding
 - All error patterns of weight < d_{min}/2 will be correctly decoded
 - This is why it is important to design codes with large minimum distance (d_{min})
 - The larger the minimum distance the smaller the probability of incorrect decoding

Hamming Codes

Linear block code capable of correcting single errors

-
$$n = 2^m - 1$$
, $k = 2^m - 1 - m$
(e.g., (3,1), (7,4), (15,11)...)

- $R = 1 m/(2^m 1) => very high rate$
- d_{min} = 3 => single error correction
- Construction of Hamming codes
 - Parity check matrix (H) consists of all non-zero binary m-tuples

Example: (7,4) hamming code (m=3)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}, \qquad G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$