16.682: Communication Systems Engineering

Lecture 18/19: Delay Models for Data Networks

May 1, 2001

Eytan Modiano

Packet Switched Networks

Queueing Systems

- Used for analyzing network performance
- In packet networks, events are random
 - Random packet arrivals
 - Random packet lengths
- While at the physical layer we were concerned with bit-error-rate, at the network layer we care about delays
 - How long does a packet spend waiting in buffers ?
 - How large are the buffers ?

Random events

- Arrival process
 - Packets arrive according to a random process
 - Typically the arrival process is modeled as Poisson
- The Poisson process
 - Arrival rate of 1 packets per second
 - Over a small interval **d**,

P(exactly one arrival) = 1d P(0 arrivals) = 1 - 1d P(more than one arrival) = 0

It can be shown that:

$$P(\text{narrivals in interval T}) = \frac{(IT)^n e^{-1T}}{n!}$$

The Poisson Process

$$P(\text{narrivals in interval T}) = \frac{(IT)^n e^{-IT}}{n!}$$

n = number of arrivals in T

It can be shown that,

$$E[n] = IT$$

$$E[n^{2}] = IT + (IT)^{2}$$

$$s^{2} = E[(n - E[n])^{2}] = E[n^{2}] - E[n]^{2} = IT$$

Inter-arrival times

• Time that elapses between arrivals (IA)

```
P(IA <= t) = 1 - P(IA > t)
= 1 - P(0 arrivals in time t)
```

```
= 1 - e^{-1t}
```

- This is known as the exponential distribution
 - Inter-arrival CDF = F_{IA} (t) = 1 e^{-1t}
 - Inter-arrival PDF = d/dt $F_{IA}(t) = I e^{-It}$
- The exponential distribution is often used to model the service times (I.e., the packet length distribution)

Markov property (Memoryless)

$$P(T \le t_0 + t \mid T > t_0) = P(T \le t)$$

Proof:

$$P(T \le t_0 + t \mid T > t_0) = \frac{P(t_0 < T \le t_0 + t)}{P(T > t_0)}$$

$$= \frac{\int_{t_0}^{t_0+t} \mathbf{l} e^{-\mathbf{l}t} dt}{\int_{t_0}^{\infty} \mathbf{l} e^{-\mathbf{l}t} dt} = \frac{-e^{-\mathbf{l}t} |_{t_0}^{t_0+t}}{-e^{-\mathbf{l}t} |_{t_0}^{\infty}} = \frac{-e^{-\mathbf{l}(t+t_0)} + e^{-\mathbf{l}(t_0)}}{e^{-\mathbf{l}(t_0)}}$$
$$= 1 - e^{-\mathbf{l}t} = P(T \le t)$$

- Previous history does not help in predicting the future!
- Distribution of the time until the next arrival is independent of when the last arrival occurred!

Example

- Suppose a train arrives at a station according to a Poisson process with average inter-arrival time of 20 minutes
- When a customer arrives at the station the average amount of time until the next arrival is 20 minutes
 - Regardless of when the previous train arrived
- The average amount of time since the last departure is 20 minutes!
- Paradox: If an average of 20 minutes passed since the last train arrived and an average of 20 minutes until the next train, then an average of 40 minutes will elapse between trains
 - But we assumed an average inter-arrival time of 20 minutes!
 - What happened?
- Answer: You tend to arrive during long inter-arrival times
 - If you don't believe me you have not taken the T

Properties of the Poisson process

• Merging Property $\lambda_1 \longrightarrow \sum I_i$ λ_k

Let A1, A2, ... Ak be independent Poisson Processes of rate 11, 12, ... 1k

A =
$$\sum A_i$$
 is also Poisson of rate = $\sum I_i$

- Splitting property
 - Suppose that every arrival is randomly routed with probability P to stream 1 and (1-P) to stream 2
 - Streams 1 and 2 are Poisson of rates Pl and (1-P)l respectively

Queueing Models

- Model for
 - Customers waiting in line
 - Assembly line
 - Packets in a network (transmission line)
- Want to know
 - Average number of customers in the system
 - Average delay experienced by a customer
- Quantities obtained in terms of
 - Arrival rate of customers (average number of customers per unit time)
 - Service rate (average number of customers that the server can serve per unit time)

Analyzing delay in networks (queueing theory)

- Little's theorem
 - Relates delay to number of users in the system
 - Can be applied to any system
- Simple queueing systems (single server)
 - M/M/1, M/G/1, M/D/1
 - M/M/m/m
- Poisson Arrivals => $P(n \text{ arrivals in interval T}) = \frac{(IT)^n e^{-IT}}{n!}$
 - 1 = arrival rate in packets/second
- Exponential service time => $P(\text{service time } < T) = 1 e^{-mT}$

m= service rate in packets/second

Little's theorem

- N = average number of packets in system
- T = average amount of time a packet spends in the system
- **1** = arrival rate of packets into the system (not necessarily Poisson)
- Little's theorem: N = IT
 - Can be applied to entire system or any part of it
 - Crowded system is long delays
 On a rainy day people drive slowly and roads are more congested!

Proof of Little's Theorem

- A(t) = number of arrivals by time t
- B(t) = number of departures by time t
- t_i = arrival time of ith customer
- T_i = amount of time ith customer spends in the system
- N(t) = number of customers in system at time t = A(t) B(t)

$$N = \lim_{t \to \infty} \frac{\sum_{i=1}^{A(t)} T_i}{t}, \quad T = \lim_{t \to \infty} \frac{\sum_{i=1}^{A(t)} T_i}{A(t)} \Longrightarrow \sum_{i=1}^{A(t)} T_i = A(t)T$$

$$N = \frac{\sum_{i=1}^{A(t)} T_i}{t} = (\frac{A(t)}{t}) \frac{\sum_{i=1}^{A(t)} T_i}{A(t)} = \mathbf{1}T$$

Application of little's Theorem

- Little's Theorem can be applied to almost any system or part of it
- Example: Customers Queue/buffer

1) The transmitter: D_{TP} = packet transmission time

- Average number of packets at transmitter = $\mathbf{I} \mathbf{D}_{TP} = \mathbf{r}$ = link utilization
- 2) The transmission line: $D_p = propagation delay$
 - Average number of packets in flight = $I D_p$
- 3) The buffer: D_{α} = average queueing delay
 - Average number of packets in buffer = $N_q = I D_q$

4) Transmitter + buffer

- Average number of packets = $r + N_{q}$

Single server queues

- M/M/1
 - Poisson arrivals, exponential service times
- M/G/1
 - Poisson arrivals, general service times
- M/D/1
 - Poisson arrivals, deterministic service times (fixed)

Markov Chain for M/M/1 system

- State k => k customers in the system
- P(I,j) = probability of transition from state I to state j
 - As d => 0, we get: P(0,0) = 1 - 1 d, P(j,j) = 1 - 1 d - md P(j,j-1) = md

P(I,j) = 0 for all other values of I,j.

- Birth-death chain: Transitions exist only between adjacent states
 - 1d, ml are flow rates between states

Eytan Modiano 10/24/99 Slide 16 _

Equilibrium analysis

- We want to obtain P(n) = the probability of being in state n
- At equilibrium $\mathbf{l} \mathbf{P}(n) = \mathbf{m} \mathbf{P}(n+1)$ for all n
 - P(n+1) = (1/m)P(n) = rP(n), r = 1/m
- It follows: $P(n) = r^n P(0)$
- Now by axiom of probability:

$$\sum_{i=0}^{\infty} P(n) = 1$$

$$\Rightarrow \sum_{i=0}^{\infty} \mathbf{r}^{n} P(0) = \frac{P(0)}{1-\mathbf{r}} = 1$$
$$\Rightarrow P(0) = 1 - \mathbf{r}$$

$$P(n) = \mathbf{r}^n (1 - \mathbf{r})$$

Average queue size

$$N = \sum_{n=0}^{\infty} nP(n) = \sum_{n=0}^{\infty} nr^{n}(1-r) = \frac{r}{1-r}$$
$$N = \frac{r}{1-r} = \frac{l/m}{1-l/m} = \frac{l}{m-l}$$

- N = Average number of customers in the system
- The average amount of time that a customer spends in the system can be obtained from Little's formula (N=IT => T = N/I)

$$T = \frac{1}{\boldsymbol{m} - \boldsymbol{l}}$$

T includes the queueing delay plus the service time (Service time = D_{TP} = 1/m)

- W = amount of time spent in queue = T - 1/m=>
$$W = \frac{1}{m-l} - \frac{1}{m}$$

• Finally, the average number of customers in the buffer can be obtained from little's formula

$$N_Q = \mathbf{I}W = \frac{\mathbf{I}}{\mathbf{m} - \mathbf{I}} - \frac{\mathbf{I}}{\mathbf{m}} = N - \mathbf{r}$$

Example (fast food restaurant)

- Customers arrive at a fast food restaurant at a rate of 100 per hour and take 30 seconds to be served.
- How much time do they spend in the restaurant?
 - Service rate = **m**= 60/0.5=120 customers per hour
 - T = 1/m l = 1/(120-100) = 1/20 hrs = 3 minutes
- How much time waiting in line?
 - W = T 1/m= 2.5 minutes
- How many customers in the restaurant?
 - N = 1T = 5
- What is the server utilization?
 - **r** = **l**/**m**= 5/6

Packet switching vs. Circuit switching

Circuit (tdm/fdm) vs. Packet switching

Delay formulas

• M/G/1

$$\boldsymbol{D} = \overline{\boldsymbol{X}} + \frac{\boldsymbol{I}\overline{\boldsymbol{X}}^2}{2(1 - \boldsymbol{I} / \boldsymbol{m})}$$

• M/M/1

$$D = \overline{X} + \frac{l/n}{m-l}$$

• M/D/1

$$\boldsymbol{D} = \boldsymbol{\overline{X}} + \frac{\boldsymbol{l} / \boldsymbol{m}}{2(\boldsymbol{m} - \boldsymbol{l})}$$

Eytan Modiano 10/24/99 Slide 22 **Delay components:**

Service (transmission) time (LHS)

Queueing delay (RHS)

Use Little's Theorem to compute N, the average number of customers in the system

Blocking Probability

- A circuit switched network can be viewed as a Multi-server queueing system
 - Calls are blocked when no servers available "busy signal"
 - For circuit switched network we are interested in the call blocking probability
- M/G/m/m system
 - Poisson call arrivals and General call duration distribution
 - m servers => m circuits
 - Last m indicated that the system can hold no more than m users
- Erlang B formula
 - Gives the probability that a caller finds all circuits busy

$$P_{B} = \frac{(\boldsymbol{l} / \boldsymbol{m})^{m} / \boldsymbol{m}!}{\sum_{n=0}^{m} (\boldsymbol{l} / \boldsymbol{m})^{n} / \boldsymbol{n}!}$$

Erlang B formula

- Used for sizing transmission line
 - How many circuits does the satellite need to support?
 - The number of circuits is a function of the blocking probability that we can tolerate

Systems are designed for a given load predictions and blocking probabilities (typically small)

- Example
 - Arrival rate = 4 calls per minute, average 3 minutes per call
 - How many circuits do we need to provision?
 Depends on the blocking probability that we can tolerate

<u>Circuits</u>	<u>Р</u> в
20	1%
15	8%
7	30%