16.682: Communication Systems Engineering

Lecture 18/19: Delay Models for Data Networks

May 1, 2001

Eytan Modiano

Packet Switched Networks

Queueing Systems

- Used for analyzing network performance
- In packet networks, events are random
- Random packet arrivals
- Random packet lengths
- While at the physical layer we were concerned with bit-error-rate, at the network layer we care about delays
- How long does a packet spend waiting in buffers ?
- How large are the buffers?

Random events

- Arrival process
- Packets arrive according to a random process
- Typically the arrival process is modeled as Poisson
- The Poisson process
- Arrival rate of λ packets per second
- Over a small interval δ,
$\mathrm{P}($ exactly one arrival $)=\lambda \delta$
$P(0$ arrivals $)=1-\lambda \delta$
$\mathbf{P}($ more than one arrival $)=0$
- It can be shown that:

$$
\mathbf{P}(\text { narrivals ininterval } \mathbf{T})=\frac{(\lambda T)^{n} e^{-\lambda T}}{n!}
$$

The Poisson Process

$$
\mathbf{P}(\text { narrivals ininterval } \mathbf{T})=\frac{(\lambda T)^{n} e^{-\lambda T}}{n!}
$$

$\mathrm{n}=$ number of arrivals in T
It can be shown that,
$\mathrm{E}[\mathrm{n}]=\lambda \mathrm{T}$
$E\left[n^{2}\right]=\lambda T+(\lambda T)^{2}$
$\sigma^{2}=\mathrm{E}\left[(\mathrm{n}-\mathrm{E}[\mathrm{n}])^{2}\right]=\mathrm{E}\left[\mathrm{n}^{2}\right]-\mathrm{E}[\mathrm{n}]^{2}=\lambda T$

Inter-arrival times

- Time that elapses between arrivals (IA)

$$
\begin{aligned}
P(I A<=t) & =1-P(I A>t) \\
& =1-P(0 \text { arrivals in time } t) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

- This is known as the exponential distribution
- Inter-arrival CDF = $\mathrm{F}_{1 \mathrm{~A}}(\mathrm{t})=1-\mathrm{e}^{-\lambda \mathrm{t}}$
- Inter-arrival PDF $=\mathrm{d} / \mathrm{dt} \mathrm{F}_{1 A}(\mathrm{t})=\lambda \mathrm{e}^{-\lambda \mathrm{t}}$
- The exponential distribution is often used to model the service times (l.e., the packet length distribution)

Markov property (Memoryless)

$$
P\left(T \leq t_{0}+t \mid T>t_{0}\right)=P(T \leq t)
$$

Proof:

$$
\begin{aligned}
& P\left(T \leq t_{0}+t \mid T>t_{0}\right)=\frac{P\left(t_{0}<T \leq t_{0}+t\right)}{P\left(T>t_{0}\right)} \\
& =\frac{\int_{t_{0}}^{t_{0}+t} \lambda e^{-\lambda t} d t}{\int_{t_{0}}^{\infty} \lambda e^{-\lambda t} d t}=\frac{-e^{-\lambda t} \mid t_{t_{0}}^{t_{0}+t}}{-\left.e^{-\lambda t}\right|_{t_{0}} ^{\infty}}=\frac{-e^{-\lambda\left(t+t_{0}\right)}+e^{-\lambda\left(t_{0}\right)}}{e^{-\lambda\left(t_{0}\right)}} \\
& =1-e^{-\lambda t}=P(T \leq t)
\end{aligned}
$$

- Previous history does not help in predicting the future!
- Distribution of the time until the next arrival is independent of when the last arrival occurred!

Example

- Suppose a train arrives at a station according to a Poisson process with average inter-arrival time of 20 minutes
- When a customer arrives at the station the average amount of time until the next arrival is $\mathbf{2 0}$ minutes
- Regardless of when the previous train arrived
- The average amount of time since the last departure is $\mathbf{2 0}$ minutes!
- Paradox: If an average of $\mathbf{2 0}$ minutes passed since the last train arrived and an average of $\mathbf{2 0}$ minutes until the next train, then an average of 40 minutes will elapse between trains
- But we assumed an average inter-arrival time of 20 minutes!
- What happened?
- Answer: You tend to arrive during long inter-arrival times
- If you don't believe me you have not taken the T

Properties of the Poisson process

- Merging Property

Let A1, A2, ... Ak be independent Poisson Processes of rate $\lambda 1, \lambda 2, \ldots \lambda k$

$$
\mathbf{A}=\sum \mathbf{A}_{i} \text { is also Poisson of rate }=\sum \lambda_{i}
$$

- Splitting property
- Suppose that every arrival is randomly routed with probability \mathbf{P} to stream 1 and (1-P) to stream 2
- Streams 1 and 2 are Poisson of rates $P \lambda$ and (1-P) λ respectively

Queueing Models

- Model for
- Customers waiting in line
- Assembly line
- Packets in a network (transmission line)
- Want to know
- Average number of customers in the system
- Average delay experienced by a customer
- Quantities obtained in terms of
- Arrival rate of customers (average number of customers per unit time)
- Service rate (average number of customers that the server can serve per unit time)

Analyzing delay in networks (queueing theory)

- Little's theorem
- Relates delay to number of users in the system
- Can be applied to any system
- Simple queueing systems (single server)
$-\quad M / M / 1, M / G / 1, M / D / 1$
- $M / M / m / m$
- Poisson Arrivals $=>P($ n arrivals in interval $T)=\frac{(\lambda T)^{n} e^{-\lambda T}}{n!}$
$-\lambda=$ arrival rate in packets/second
- Exponential service time $\Rightarrow P($ service time $<\mathrm{T})=1-\mathrm{e}^{-\mu \mathrm{T}}$
- $\quad \mu=$ service rate in packets/second

Little's theorem

- $\mathbf{N}=$ average number of packets in system
- $\mathbf{T}=$ average amount of time a packet spends in the system
- $\lambda=$ arrival rate of packets into the system (not necessarily Poisson)
- Little's theorem: $\mathbf{N}=\lambda T$
- Can be applied to entire system or any part of it
- Crowded system 区 long delays

On a rainy day people drive slowly and roads are more congested!

Proof of Little's Theorem

- $A(t)=$ number of arrivals by time t
- $B(t)=$ number of departures by time t
- $t_{i}=$ arrival time of $i^{\text {th }}$ customer
- $\mathrm{T}_{\mathrm{i}}=$ amount of time $\mathrm{i}^{\text {th }}$ customer spends in the system
- $N(t)=$ number of customers in system at time $t=A(t)-B(t)$

$$
\begin{aligned}
& N=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{A(t)} T_{i}}{t}, \quad T=\lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{A(t)} T_{i}}{A(t)} \Rightarrow \sum_{i=1}^{A(t)} T_{i}=A(t) T \\
& N=\frac{\sum_{i=1}^{A(t)} T_{i}}{t}=\left(\frac{A(t)}{t}\right) \frac{\sum_{i=1}^{A(t)} T_{i}}{A(t)}=\lambda T
\end{aligned}
$$

Application of little's Theorem

- Little's Theorem can be applied to almost any system or part of it
- Example:

1) The transmitter: $D_{T P}=$ packet transmission time

- Average number of packets at transmitter $=\lambda \mathrm{D}_{\mathrm{TP}}=\rho=$ link utilization

2) The transmission line: $D_{p}=$ propagation delay

- Average number of packets in flight $=\lambda D_{p}$

3) The buffer: $D_{q}=$ average queueing delay

- Average number of packets in buffer $=N_{q}=\lambda D_{q}$

4) Transmitter + buffer
$-\quad$ Average number of packets $=\rho+\mathbf{N}_{\mathbf{q}}$

Single server queues

μ packet per second
\rightarrow Service time $=1 / \mu$

- $M / M / 1$
- Poisson arrivals, exponential service times
- M/G/1
- Poisson arrivals, general service times
- M/D/1
- Poisson arrivals, deterministic service times (fixed)

Markov Chain for M/M/1 system

- State \mathbf{k} => \mathbf{k} customers in the system
- $P(I, j)=$ probability of transition from state I to state \mathbf{j}
- As $\delta=>0$, we get:

$$
\begin{array}{ll}
\mathbf{P}(\mathbf{0}, \mathbf{0})=1-\lambda \delta, & \mathbf{P}(\mathrm{j}, \mathbf{j}+1)=\lambda \delta \\
\mathbf{P}(\mathrm{j}, \mathrm{j})=1-\lambda \delta-\mu \delta & \mathbf{P}(\mathrm{j}, \mathrm{j}-1)=\mu \delta
\end{array}
$$

$$
P(1, \mathrm{j})=0 \text { for all other values of } \mathrm{I}, \mathrm{j} .
$$

- Birth-death chain: Transitions exist only between adjacent states
- $\quad \lambda \delta, \mu \delta$ are flow rates between states

Equilibrium analysis

- We want to obtain $\mathrm{P}(\mathrm{n})=$ the probability of being in state n
- At equilibrium $\lambda \mathbf{P}(\mathbf{n})=\mu \mathbf{P}(\mathbf{n}+\mathbf{1})$ for all \mathbf{n}
- $\mathbf{P}(\mathbf{n}+\mathbf{1})=(\lambda / \mu) \mathbf{P}(\mathbf{n})=\rho \mathbf{P}(\mathbf{n}), \rho=\lambda / \mu$
- It follows: $\mathbf{P (n)}=\rho^{\mathbf{n}} \mathbf{P}(0)$
- Now by axiom of probability: $\quad \sum_{i=0}^{\infty} P(n)=1$

$$
\begin{aligned}
& \Rightarrow \sum_{i=0}^{\infty} \rho^{n} P(0)=\frac{P(0)}{1-\rho}=1 \\
& \Rightarrow P(0)=1-\rho
\end{aligned}
$$

$$
P(n)=\rho^{n}(1-\rho)
$$

Average queue size

$$
\begin{aligned}
& N=\sum_{n=0}^{\infty} n P(n)=\sum_{n=0}^{\infty} n \rho^{n}(1-\rho)=\frac{\rho}{1-\rho} \\
& N=\frac{\rho}{1-\rho}=\frac{\lambda / \mu}{1-\lambda / \mu}=\frac{\lambda}{\mu-\lambda}
\end{aligned}
$$

- $\mathbf{N}=$ Average number of customers in the system
- The average amount of time that a customer spends in the system can be obtained from Little's formula ($N=\lambda T=>T=N / \lambda$)

$$
T=\frac{1}{\mu-\lambda}
$$

- T includes the queueing delay plus the service time (Service time $=D_{T P}=1 / \mu$)
- $W=$ amount of time spent in queue $=T-1 / \mu=>\quad W=\frac{1}{\mu-\lambda}-\frac{1}{\mu}, ~$
- Finally, the average number of customers in the buffer can be obtained from little's formula

$$
N_{Q}=\lambda W=\frac{\lambda}{\mu-\lambda}-\frac{\lambda}{\mu}=N-\rho
$$

Example (fast food restaurant)

- Customers arrive at a fast food restaurant at a rate of 100 per hour and take 30 seconds to be served.
- How much time do they spend in the restaurant?
- Service rate $=\mu=60 / 0.5=120$ customers per hour
$-\quad T=1 / \mu-\lambda=1 /(120-100)=1 / 20 \mathrm{hrs}=3$ minutes
- How much time waiting in line?
$-W=T-1 / \mu=2.5$ minutes
- How many customers in the restaurant?
$-\quad N=\lambda T=5$
- What is the server utilization?
$-\quad \rho=\lambda / \mu=5 / 6$

Packet switching vs. Circuit switching

Packets generated at random times

Circuit (tdm/fdm) vs. Packet switching

Delay formulas

- M/G/1

$$
D=\bar{X}+\frac{\lambda \bar{X}^{2}}{2(1-\lambda / \mu)}
$$

- $M / M / 1$

$$
D=\bar{X}+\frac{\lambda / \mu}{\mu-\lambda}
$$

- M/D/1

$$
\boldsymbol{D}=\overline{\boldsymbol{X}}+\frac{\lambda / \mu}{2(\mu-\lambda)}
$$

Delay components:
Service (transmission) time (LHS)
Queueing delay (RHS)

Use Little's Theorem to compute N, the average number of customers in the system

Blocking Probability

- A circuit switched network can be viewed as a Multi-server queueing system
- Calls are blocked when no servers available - "busy signal"
- For circuit switched network we are interested in the call blocking probability
- M/G/m/m system
- Poisson call arrivals and General call duration distribution
- m servers => m circuits
- Last m indicated that the system can hold no more than m users
- Erlang B formula
- Gives the probability that a caller finds all circuits busy

$$
P_{B}=\frac{(\lambda / \mu)^{m} / m!}{\sum_{n=0}^{m}(\lambda / \mu)^{n} / n!}
$$

Erlang B formula

- Used for sizing transmission line
- How many circuits does the satellite need to support?
- The number of circuits is a function of the blocking probability that we can tolerate

Systems are designed for a given load predictions and blocking probabilities (typically small)

- Example
- Arrival rate $=4$ calls per minute, average 3 minutes per call
- How many circuits do we need to provision?

Depends on the blocking probability that we can tolerate

Circuits	$\mathbf{P}_{\mathbf{B}}$
20	1%
15	8%
7	30%

