18.099b Problem Set 2a

Due: Thursday, February 26th (in class or before).

1. Suppose $F \subseteq \mathbb{R}$ is a subset of the real numbers for which $\sup F$ exists. Show that $\sup F=\lim _{n \rightarrow \infty} a_{n}$ for some sequence $\left\{a_{n}\right\}$ of numbers in F.
(Note: $\sup F$ is the least upper bound of F : the least number α such that $x \leq \alpha$ for all $x \in F$.)
2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Prove that if $\left\{a_{n}\right\}$ converges than so does $\left\{\left|a_{n}\right|\right\}$.
