18.099b Problem Set 3a

Due: Thursday, Match 3rd (in class or before).

Suppose $X \subseteq \mathbb{R}$ is such that every infinite subset of X contains an infinite convergent sequence. That is, if $F \subseteq X$ is infinite then there exists an infinite sequence $\left\{a_{n}\right\}$ with $a_{n} \in F$ for all n, and a number $a \in \mathbb{R}$, such that $\lim _{n \rightarrow \infty} a_{n}=a$.

Prove that X is bounded from above and below.
Hint: Assume, for a contradiction, that the conclusion fails. Construct an infinite set $\left\{p_{1}, p_{2}, \ldots\right\}$ in X such that for any $i \neq j\left|p_{i}-p_{j}\right| \geq 1$. Use this to contradict our assumption on X.

