18.099b Problem Set 3b

Due: Thursday, Match 3rd (in class or before).

Let X be a metric space. Recall that a neighbourhood is a subset of X of the form

$$
N_{r}(p):=\{x \in X: d(p, x)<r\}
$$

where r is a positive real number and p is a point in X. The number r is called the radius of $N_{r}(p)$.

Suppose every infinite subset of X has a limit point. Prove that for every positive real number $r>0$ there are finitely many neighbourhoods of radius r that cover X.

Hint: Assume, for a contradiction, that the conclusion fails for some $r>0$. Construct an infinite set $\left\{p_{1}, p_{2}, \ldots\right\}$ in X such that for any $i \neq j d\left(p_{i}, p_{j}\right) \geq r$. Use this to contradict our assumption on X.

