18.099b Problem Set 5a

Due: Thursday, April 1st (in class or before).

This assignment is to write a short paper on the oscillation of a function. It should be typeset in Tex. Arrange and express the material discussed below in whatever way you think best. Be sure to define all the terms I have italicised (even if I have not defined them here).

Given a function $f(x)$ and a real number c, we say that f is bounded about c if there exists some $\epsilon>0$ such that
(i) f is defined on $[c-\epsilon, c+\epsilon]$ except possibly at c itself, and
(ii) the set $\{f(x): x \in[c-\epsilon, c+\epsilon], x \neq c\}$ is bounded from above and below.

For any such ϵ let $A_{\epsilon}:=\{f(x): x \in[c-\epsilon, c+\epsilon], x \neq c\}$. The oscillation of f at c is defined to be the number

$$
\operatorname{osc}_{f}(c):=\lim _{\epsilon \rightarrow 0}\left(\sup A_{\epsilon}-\inf A_{\epsilon}\right)
$$

Show that this limit exists and hence $\operatorname{osc}_{f}(c)$ is well defined.
Show that for functions f bounded about a real number $c, \operatorname{osc}_{f}(c)=0$ if and only if f is continuous or has a removable singularity at c. Give two examples of non-zero oscillation, one where c is a jump singularity and one where c is an essential singularity.

An intuitive way to describe what it means for a function to be continuous at a point c would be to say: " $f(x)$ can be made arbitrarily close to $f(c)$ by making x arbitrarily close to c ". Fixing $\tau \geq 0$, give an analogous intuitive description of what it means for f to have oscillation τ at a point c. The idea is that oscillation measures the "amount" of discontinuity.

Suppose f is monotonically increasing and defined on an interval $[a, b]$. Note that f cannot have any removable singularities in $[a, b]$, and that that for any $c \in(a, b)$, f is bounded about c. Moreover, $\operatorname{osc}_{f}(c)=\lim _{x \rightarrow c^{+}} f(x)-\lim _{x \rightarrow c^{-}} f(x)$. Conclude that for any $\tau>0$, the number of points in (a, b) at which f has oscillation greater than or equal to τ is at most $\frac{f(b)-f(a)}{\tau}$. Use this to show that f has at most countably many discontinuities in (a, b). (Recall that a set S is countable if there is a bijection between \mathbb{N} and S).

