18.099b Problem Set 7a (Corrected)

Due: Thursday, April 29th.

This assignment is to write an essay on functions of *bounded variation*. It should be typeset in Tex. Arrange and express the material discussed below in whatever way you think best. The paper should flow smoothly and be well motivated.

Suppose $a \leq b$ are real numbers. Let $\mathcal{P}[a, b]$ denote the set of all partitions of the interval [a, b]. Suppose f(x) is a function defined on an interval [a, b]. For any $P \in \mathcal{P}[a, b]$ denote by $S_f(P)$ the sum

$$S_f(P) := \sum_{k=1}^n |f(x_k) - f(x_{k-1})|$$

where P is the partition $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$. The total variation of f(x) on [a, b] is defined to be

$$V_f(a,b) \equiv \sup\{S_f(P) : P \in \mathcal{P}[a,b]\}.$$

That is, $V_f(a, b)$ is the supremum of the set of all $S_f(P)$ for all possible partitions P of [a, b]. If $V_f(a, b) < \infty$, then f is said to be of *bounded variation* on [a, b].

Show that all monotonic functions are of bounded variation. In fact, the total variation of a monotonic function on [a, b] is |f(b) - f(a)|.

Note that functions of bounded variation are bounded. However, there are functions that are bounded, and even continuous on a closed interval, but are not of bounded variation. *Hint: Consider* $x \sin(\frac{1}{x})$ on [0, 1].

Let BV[a, b] denote the set of functions of bounded variation on [a, b]. Show that BV[a, b] is a *linear space*: If $f, g \in BV[a, b]$ and $c \in \mathbb{R}$, then $f + g \in BV[a, b]$ and $cf \in BV[a, b]$.

A function f on a closed interval [a, b] is said to satisfy a Lipschitz condition if there exists a constant K such that

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in [a, b]$. Show that if f satisfies a Lipschitz condition then it is of bounded variation. Use this to conclude that if f(x) has a derivative at every point on [a, b] and if f'(x) is bounded on [a, b], then $f \in BV[a, b]$. *Hint: Mean value theorem.*

As an aside, discuss *contractions*, which are a special case of functions satisfying a Lipschitz condition. A function f on a closed interval [a, b] is a *contraction* if there exists a constant $\lambda < 1$ such that

$$|f(x) - f(y)| \le \lambda |x - y|$$

for all $x, y \in [a, b]$. Prove the fixed-point theorem which states that if f is a contraction on [a, b] with values in [a, b], then it has a unique fixed-point in [a, b]; that is, there exists a unique number $x \in [a, b]$ such that f(x) = x.

Getting back to bounded variation, prove the following striking fact: A function f(x) defined on [a, b] is of bounded variation if and only if it is the difference of two increasing functions on [a, b]. *Hint: Suppose* $f \in BV[a, b]$. Show that for any $x \leq x'$ from [a, b],

$$V_f(a, x') \ge V_f(a, x) + |f(x) - f(x')|.$$

Conclude that the function $g(x) = V_f(a, x)$ and the function $h(x) = f(x) + V_f(a, x)$ are both increasing on [a, b]. Is a representation of $f \in BV[a, b]$ as a difference of two increasing functions unique? Give several examples.

Prove that functions of bounded variation are integrable.