LIMITS OF FUNCTIONS

Given $f: \mathbb{R} \rightarrow \mathbb{R}, \lim _{x \rightarrow p} f(x)=q$ means that $|f(x)-q|<\epsilon$ whenever $0<|x-p|<$ δ.

Theorem 1. $\lim _{x \rightarrow p} f(x)=q$ if and only if $\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$ whenever $\lim _{n \rightarrow \infty} p_{n}=p$ with $p_{n} \neq p$.

Proof. Suppose $\lim _{x \rightarrow p} f(x)=q$ and let $\left\{p_{n}\right\}$ be any sequence of real numbers converging to p, but not equal to p. Let $\epsilon>0$ be arbitrary. Then there exists a $\delta>0$ such that $|f(x)-q|<\epsilon$ if $0<|x-p|<\delta$. On the other hand, there is a natural number N such that for all $n>N, 0<\left|p_{n}-p\right|<\delta$. Hence for all $n>N$, $\left|f\left(p_{n}\right)-q\right|<\epsilon$, and so $\left\{f\left(p_{n}\right)\right\}$ converges to q.

Suppose $\lim _{x \rightarrow p} f(x) \neq q$. Then there exists some $\epsilon>0$ such that for every $\delta>0$ there exists some $x(\delta) \in \mathbb{R}$ for which $0<|x(\delta)-p|<\delta$ but $|f(x(\delta))-q| \geq \epsilon$. Hence $\lim _{n \rightarrow \infty} f\left(x\left(\frac{1}{n}\right)\right) \neq q$ but $\lim _{n \rightarrow \infty} x\left(\frac{1}{n}\right)=p$.

