LIMITS OF FUNCTIONS

RAHIM MOOSA

In this short note we discuss the notion of the limit of a function.
Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and points $p, q \in \mathbb{R}$, we say that the limit of f at p is q, denoted by $\lim _{x \rightarrow p} f(x)=q$, to mean that for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-q|<\epsilon$ whenever $0<|x-p|<\delta$. It is important here that we take $|x-p| \neq 0$ in the above defiition. That is, whether or not q is the limit of f at p does not depend on the value of f at p.

As the following theorem shows, this can be rephrased in terms of sequences.
Theorem 0.1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function and $p, q \in \mathbb{R}$. Then the following are equivalent:
(i) $\lim _{x \rightarrow p} f(x)=q$
(ii) For any sequence $\left\{p_{n}\right\}$ with $\lim _{n \rightarrow \infty} p_{n}=p$ but $p_{n} \neq p, \lim _{n \rightarrow \infty} f\left(p_{n}\right)=q$.

Proof. Suppose (i) holds and let $\left\{p_{n}\right\}$ be any sequence of real numbers converging to p, but not equal to p. Let $\epsilon>0$ be arbitrary. Then there exists a $\delta>0$ such that $|f(x)-q|<\epsilon$ if $0<|x-p|<\delta$. On the other hand, there is a natural number N such that for all $n>N, 0<\left|p_{n}-p\right|<\delta$. Hence for all $n>N,\left|f\left(p_{n}\right)-q\right|<\epsilon$, and so $\left\{f\left(p_{n}\right)\right\}$ converges to q. That is, (ii) holds.

Conversely, suppose (i) fails. Then there exists some $\epsilon>0$ such that for every $\delta>0$ there exists some $x(\delta) \in \mathbb{R}$ for which $0<|x(\delta)-p|<\delta$ but $|f(x(\delta))-q| \geq \epsilon$. Hence the sequence $\left\{x\left(\frac{1}{n}\right)\right\}$ witnesses the failure of $(i i)$.

