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Why bother with biology?

® Both plant (musculoskeletal system) and controller (nervous
system) optimized by evolution for versatility and efficiency.



Motor neuroscience: levels and themes

® Mechanics of the neuromusculoskeletal system
® Simplification of control by neural modulation of the mechanics

" Motor behavior
" Model-based adaptive control in changing environments
® Coordinate frames and methods for movement planning

" Motor neurophysiology
® Neural representations in motor cortex
® Cortically-controlled neural prosthetics



Mechanics of the neuromusculoskeletal system

®" Force production by a muscle is dependent on its length and
velocity.
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Mechanics of the neuromusculoskeletal system

® Changes in muscle activation cause changes in the viscoelastic
properties of the muscle.
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Mechanics of the neuromusculoskeletal system

®" The nervous system receives information on muscle length,
velocity, and force.
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Mechanics of the neuromusculoskeletal system

" Reflexes are local feedback loops that can modify the
viscoelastic behavior of the motor periphery.
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" Reflex gains can be modulated by higher levels of the neural
controller (e.g. cerebellum, motor cortex).



Mechanics of the neuromusculoskeletal system

" Thus, total neuromuscular viscoelasticity has both intrinsic (i.e.
muscle) and reflexive contributions. The gain of each of these
contributions can be modulated by central commands.

® At least for some behaviors, the neural controller likely takes
advantage of these mechanical properties ...

1. Equilibrium-point (servo) control
2. Impedance control



Mechanics of the neuromusculoskeletal system

® Equilibrium-point control
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® Equilibrium points dependent on neuromuscular elasticity & loads.

® Changing the stiffness ratio for antagonistic muscles shifts the
equilibrium point (producing a “virtual trajectory”).

®" Precludes need to compute inverse dynamics, thus simplifying
neural computations.
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Mechanics of the neuromusculoskeletal system

Hogan, 1985

" Impedance control Cj DS 2 @

¥ |n addition to viscoelastic behavior, inertial behavior can be
modulated due to the kinematically redundant skeleton.

® Modulate full mechanical impedance (force-length, force-velocity,
and force-acceleration relationships) of the limb for improved

stability or performance.
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Motor neuroscience: levels and themes

® Mechanics of the neuromusculoskeletal system
® Simplification of control by neural modulation of the mechanics

" Motor behavior
" Model-based adaptive control in changing environments
® Coordinate frames and methods for movement planning

" Motor neurophysiology
® Neural representations in motor cortex
® Cortically-controlled neural prosthetics



Motor behavior

" Adaptive control of reaching movements generally leads to
proactive, not reactive (i.e. impedance control), compensation.
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Motor behavior
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Motor behavior

® Control of reaching movements may depend on the type of task
(e.g. nominally stable or unstable) and familiarity with the task.
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But how do we plan motions?
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Motor behavior

® Motions are planned in endpoint coordinates.

Joint trajectories are complex

Endpoint hand paths are straight

Endpoint velocity
Is “bell-shaped”
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Motor behavior

" Optimization criteria have been proposed to explain the
observed behavior, given the seemingly ill-posed problem of
getting from point A to point B.

Endpoint hand paths are straight
" Minimum jerk (Hogan, 1984) T1g Teq T
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Motor behavior

{a) setup

® But production of a fixed “desired
trajectory”, whether through
optimization or not, does no
account for some features of
motor behavior.
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Motor behavior

® Optimal feedback control may
provide a better description of
motor planning, as well as motor
execution.

® But what is the cost function?
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Motor neuroscience: levels and themes

® Mechanics of the neuromusculoskeletal system
® Simplification of control by neural modulation of the mechanics

" Motor behavior
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Motor neurophysiology
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Motor neurophysiology
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Motor neurophysiology
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Motor neurophysiology

® What is encoded in motor cortex — kinematics or dynamics?
®" Neural recording experiments

Kakei et al, 1999



Motor neurophysiology

® What is encoded in motor cortex — kinematics or dynamics?
" Neural stimulation experiments
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Motor neurophysiology

® Engineering application: cortically-controlled neural prosthetics
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Motor neurophysiology

® Neural control of a robot

Data acquisition unit
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