2.165 Robotics

Spring 2006

Problem Set $\# 3$

Issued: Thu 03/16/2006
Due: Tue 04/04/2006

Problem 1:

In Problem 6 of Problem Set\#2, we designed a P.D. controller to achieve a point-topoint task with a planar two-link manipulator.

For impedance control of the manipulator in this problem, we proposed a control law for the joint torque τ that can achieve in the task space a restoring force \mathbf{F} corresponding to the virtual programmable cartesian spring $\mathbf{K}_{\mathbf{p}}$ and damper $\mathbf{K}_{\mathbf{d}}$.

With gravity compensation, the control law was formulated in terms of the end-effector cartesian displacement error $\tilde{\mathbf{x}}=\mathbf{x}-\mathbf{x}_{\mathbf{d}}$ as:

$$
\tau=\mathbf{g}(\mathbf{q})-\mathbf{J}^{T}\left(\mathbf{K}_{\mathbf{p}} \tilde{\mathbf{x}}+\mathbf{K}_{\mathbf{d}} \dot{\tilde{\mathbf{x}}}\right)
$$

Consider now the case of impedance control of a planar four-link manipulator for achieving a point-to-point task.

In addition to the virtual cartesian spring and damper at the end-effector, let us say we also have a virtual cartesian spring and damper at joint-2 (the joint adjacent to the "shoulder" of the manipulator).

Propose a control law similar to the one shown above for the torque τ for the case of this four-link manipulator.

- The control law must be written in terms of the end-effector cartesian displacement error $\tilde{\mathbf{x}}_{\mathrm{e}}$ and the joint-2 cartesian displacement error $\tilde{\mathbf{x}}_{\mathbf{2}}$.
- Neglect the gravity compensation term $\mathbf{g}(\mathbf{q})$. (You can find this term easily, we have done a similar exercise as part of Problem 3(b) in Problem Set\#2.)
- No simulations are required (i.e. just propose the control law: NO coding is required in this problem!)
[Hint: Your answer should contain two different (why?) \mathbf{J}^{T} matrices respectively premultipying the restoring force vectors corresponding to the mechanical impedances at the end-effector and the joint-2. Explicity derive expressions for the Jacobian matrices in terms of joint angles and link lengths of the manipulator.]

Problem 2:

Consider the dynamic equations in the vertical plane for a two degree-of-freedom planar manipulator with two rotational joints

$$
\mathbf{H}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\tau
$$

where

$$
\begin{aligned}
\mathbf{q}=\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right], \mathbf{H} & =\left[\begin{array}{ll}
H_{11} & H_{12} \\
H_{12} & H_{22}
\end{array}\right], \mathbf{C}=\left[\begin{array}{cc}
-h \dot{\theta}_{2} & -h \dot{\theta}_{1}-h \dot{\theta}_{2} \\
h \dot{\theta}_{1} & 0
\end{array}\right], \mathbf{g}=\left[\begin{array}{l}
G_{1} \\
G_{2}
\end{array}\right] \\
H_{11} & =m_{1} l_{c 1}^{2}+I_{1}+m_{2}\left(l_{1}^{2}+l_{c 2}^{2}+2 l_{1} l_{c 2} \cos \theta_{2}\right)+I_{2} \\
H_{22} & =m_{2} l_{c 2}^{2}+I_{2} \\
H_{12} & =m_{2} l_{1} l_{c 2} \cos \theta_{2}+m_{2} l_{c 2}^{2}+I_{2} \\
h & =m_{2} l_{1} l_{c 2} \sin \theta_{2} \\
G_{1} & =m_{1} l_{c 1} g \cos \theta_{1}+m_{2} l_{c 2} g \cos \left(\theta_{1}+\theta_{2}\right)+m_{2} l_{1} g \cos \theta_{1} \\
G_{2} & =m_{2} l_{c 2} g \cos \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

Design and simulate an adaptive controller without any initial knowledge of the constant parameters. The desired trajectory is

$$
\theta_{d 1}=1-e^{-t} \quad \theta_{d 2}=2\left(1-e^{-t}\right)
$$

(In the simulation, you can choose the real values of the parameters and the initial conditions by yourself.)

Problem 3:

Consider the dynamic equations of a robot manipulator

$$
\mathbf{H}(\mathbf{q}) \ddot{\mathbf{q}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}+\mathbf{D} \dot{\mathbf{q}}+\mathbf{g}(\mathbf{q})=\tau
$$

where the matrix \mathbf{D} is constant symmetric positive definite. Consider an adaptive P.D. controller for such a robot with the control law

$$
\tau=\mathbf{Y} \hat{\mathbf{a}}-\mathbf{K}_{\mathrm{d}} \dot{\tilde{\mathbf{q}}}-\mathbf{K}_{\mathbf{p}} \tilde{\mathbf{q}}
$$

and the adaptation law

$$
\dot{\hat{\mathbf{a}}}=-\mathbf{P} \mathbf{Y}^{T} \mathbf{s}
$$

where

$$
\begin{aligned}
Y \mathbf{a} & =\mathbf{H}(\mathbf{q}) \ddot{\mathbf{q}}_{\mathbf{r}}+\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}_{\mathbf{r}}+\mathbf{D} \dot{\mathbf{q}}_{\mathbf{r}}+\mathbf{g}(\mathbf{q}) \\
\mathbf{s} & =\dot{\mathbf{q}}-\dot{\mathbf{q}}_{\mathbf{r}}=\dot{\tilde{\mathbf{q}}}+\lambda \tilde{\mathbf{q}} \\
\tilde{\mathbf{q}} & =\mathbf{q}-\mathbf{q}_{\mathbf{d}}
\end{aligned}
$$

The adaptation and controller gain matrices $\mathbf{P}, \mathbf{K}_{\mathbf{d}}$ and $\mathbf{K}_{\mathbf{p}}$ are all symmetric positive definite.

Show that this controller will force the tracking error $\tilde{\mathbf{q}}$ to converge to zero.
[Hint: You may want to use the Lyapunov function candidate

$$
V=\frac{1}{2} \mathbf{s}^{T} \mathbf{H} \mathbf{s}+\frac{1}{2} \tilde{\mathbf{a}}^{T} \mathbf{P}^{-1} \tilde{\mathbf{a}}+\frac{1}{2} \tilde{\mathbf{q}}^{T}\left(\mathbf{K}_{\mathbf{p}}+\lambda \mathbf{K}_{\mathbf{d}}\right) \tilde{\mathbf{q}}
$$

