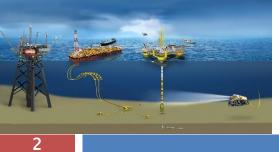


2.29 FINAL PROJECT PRESENTATION

Investigation of Fluid-Structure Interactions Using Fourier Spectral Element Method


OUTLINE:

- Project Objectives
- High Order Schemes
- NEKTAR Code
- Results
- Summary
- References

3D pressure field of flow past a stationary cylinder at t = 222 (Re =100,000)

Abiodun Timothy Olaoye

Project Objectives

Examine application of high order schemes for FSI problems

- Pre-processing
- Simulation set up
- Post-processing
- Verification and validation of current algorithm
 - > Mesh sensitivity analysis
 - Comparison of numerical results with experiment
 - > Other results

High Order Schemes

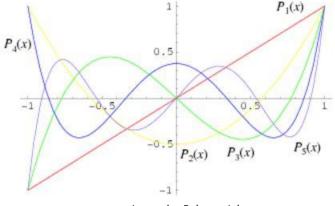
Advantages

- > Greater accuracy for same resolution
- Relevant for specialized cases
- > High accuracy + geometric flexibility (spectral element method)

Challenges

- Memory storage
- Computational cost
- > Fragile stability (oscillation problems)

High Order Schemes


Spectral Element Method

- Originally developed at MIT by Anthony T. Patera (1984)
- Employs special polynomials
- Uses elemental application
- Quadrature rules

 $\int_{-1}^{1} u(\xi) \, d\xi = \sum_{i=0}^{Q-1} w_i u(\xi_i) + R(u)$

(Gauss method)

□ Over-integration (Qmin= 3P/2 + 2 points for N.S conv. term)

Legendre Polynomials

Courtesy: Wolfram Web Resources

Methodology

Fourier spectral/hp element method:

- Employs 2D (rectangular and/or triangular) spectral elements in XY plane
- Uses a set of Fourier planes for span-wise discretization in homogenous direction
- Applies Arbitrary Lagrangian–Eulerian (ALE) framework at moving boundaries
- Parallelized routine through Message Passing Interface (MPI)

Stabilized DNS model:

- Solves modified Navier-Stokes equation with entropy viscosity term
- Applies 3/2 quadrature rule for integration of non-linear advection term
- Employs implicit filtering (SVV) to achieve robust DNS but at low resolution

Algorithm

□ Fluid Solver (Splitting/Projection method)

- > High order splitting method (rotational form)
- > Explicit treatment of advection term
- > Implicit treatment of diffusion term
- > Consistent splitting error using appropriate pressure B.C

Structure Solver

- Newmark time integration
- Implicit scheme
- Second order accurate

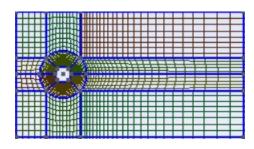
$$\begin{split} \dot{u}_{n+1} &= \dot{u}_n + \frac{\Delta t}{2} \left(\ddot{u}_n + \ddot{u}_{n+1} \right) \\ u_{n+1} &= u_n + \Delta t \, \dot{u}_n + \frac{1-2\beta}{2} \, \Delta t^2 \ddot{u}_n + \beta \Delta t^2 \ddot{u}_{n+1} \qquad \text{where, } \beta = 1/4 \end{split}$$

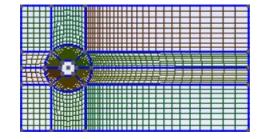
Pre-processing

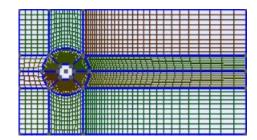
Case 1:

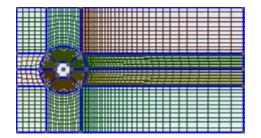
□ Number of elements,
$$k = 2516$$
; $dt = 4e-4$;

Case 2:


□ Number of elements, k = 3370; dt = 2e-4;


Case 3:


□ Number of elements, k = 4438; dt = 2e-4;


Case 4:

□ Number of elements, k = 5538; dt = 1e-4;

Simulation set up

□
$$\bar{L} = \frac{L}{D} = 2\pi$$
; Re = 100,000;
□ Nz = 64 planes; NMODES = 3

Post-processing

- Vorticity derivation from velocity field
- Visualization tools (Visit, Tecplot, Paraview e.t.c)
- Supplementary MATLAB codes

88 % Fourier analysis of forces on cylinder in uniform flow at Re=10,000 and \$ 100,000 % Script written by ABIODUN OLAOYE working on 2.29 project % May, 2017 clear clc 88 NL = 1;% Number of cases per run NUM 1= 140; % Start time of signal % End time of signal NUM 2= 192; for LC=1:NL prompt= 'Enter file name : '; str 1= input(prompt,'s'); % Obtain response from user MM=load(str 1); %Extract Time series of Wave Height Time= MM(:,1); Cx= 2*MM(:,2); Cy= 2*MM(:,3); ii=1; % Find mean of force coefficients iii= 2500; CD m= mean(Cx(iii:end)) %#ok<*NOPTS> % drag CL m= mean(Cy(iii:end)) % lift % Find RMS value of Lift CL rms= sqrt(mean((Cy(iii:end)-mean(Cy(iii:end))).^2)) t 0= Time(1,1); tt s= Time(10,1)-Time(9,1); % Time step of signal Fs= 1/tt s; % Sampling frequency figure () plot (Time(ii:end), Cy(ii:end)) title('Original Lift Coeficient Time Series') xlabel('t')

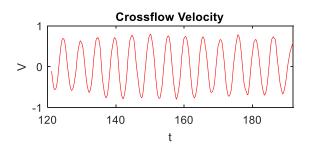
Results

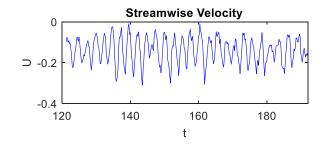
Mesh Sensitivity and Validation

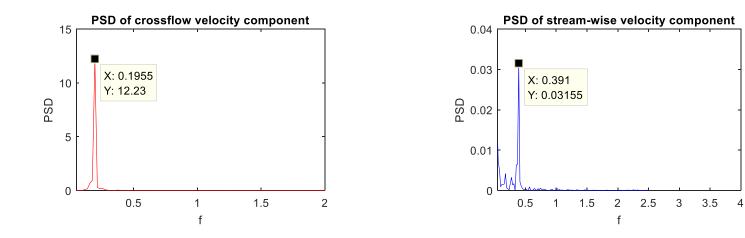
Method	St
SDNS (N= 2516)	0.196
SDNS (N= 3370)	0.196
Exp (Schewe,1983*)	0.197

Method	-Cbp
SDNS (N = 2516)	1.212
SDNS (N = 3370)	1.335
Exp (Norberg,1994*)	1.336

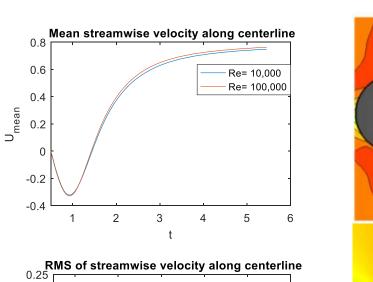
Method	CL'
SDNS (N = 2516)	0.421
SDNS (N = 3370)	0.679
Exp (West&Apelt, 1993)	0.593

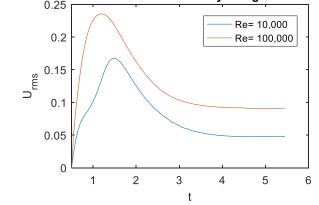

Method	CD
SDNS (N = 2516)	1.170
SDNS (N = 3370)	1.293
Exp (Wieselsberger, 1921*)	1.248

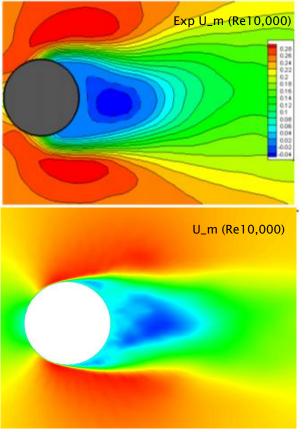

* Extracted from Springer Handbook of Experimental Fluid Mechanics (2007)

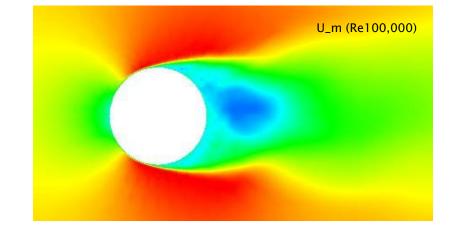

Results

Wake Analysis

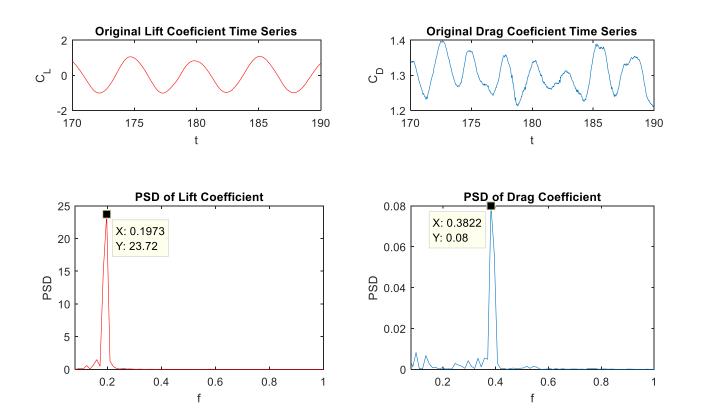

Frequency of Streamwise velocity is twice vortex shedding frequency!

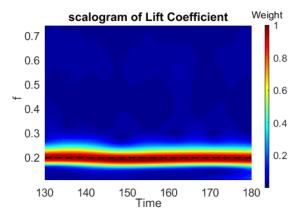


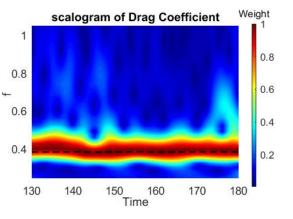

Streamwise and crossflow velocity at x=0.6D, y=0 and z=0 (Re = 100,000)

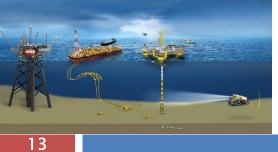


Wake Analyses

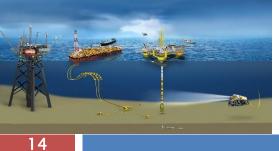

Accurate prediction of negative velocity region behind cylinder Negative velocity region shorter for higher Re case

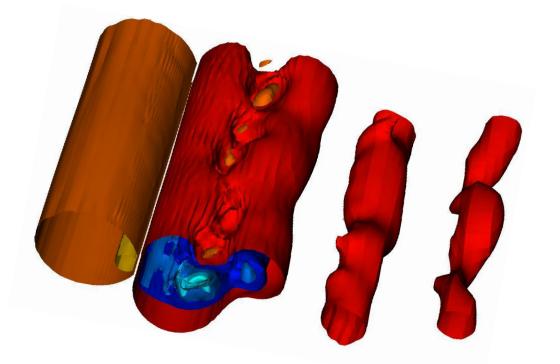



Results


Span-averaged forces

1st and 2nd harmonics dominant in Lift and drag forces respectively (Re= 100,000)




- SEM offers high accuracy in addition to geometric flexibility
- Current set up suitable for problems with at least one homogenous B.C

References

- □ Karniadakis G.E., Sherwin S., "Spectral/hp element methods for computational fluid Dynamics", (2005)
- Patera A.T. "A Spectral element method for fluid dynamics: Laminar flow in a channel expansion" (1984). J. Comp. Phy. 54, 468-488
- Cameron T., Alexander L.Y., John F. F. (Eds.) ,"Springer handbook of experimental fluid mechanics" (2007)

THANK YOU

3D pressure field of flow past a stationary cylinder at t = 270 (Re = 100,000)

Abiodun Timothy Olaoye