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Piston rings are metallic seals with an outward expanding strain, that are assembled in the 
piston. Piston rings have to fulfill three core functions:

• Sealing combustion gases (Blow-by control)

• Controlling oil consumption

• Transferring heat from piston to cylinder
In order to achieve this functions the piston rings must be in 
contact with the cylinder wall and piston groove side. Typically a 
ring pack for internal combustion engines consists of three 
rings:  

§ first compression ring (also top ring or upper
compression ring UCR)
§ second compression ring (also second ring or 

lower compression ring LCR)
§ oil control ring OCR (also third ring)

All this functions need to be achieved with low friction and 
durability. Rings should survive for engine life by mean of 
suitable materials, coatings and designs.

From Mahle

I. Brief introduction to the ring pack system for internal combustion engines:
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II. Conformability analysis using the Curved Beam Based Ring Design Tool:
Characterize the ring steady state relative position with respect to the groove and the liner
External forces to consider:
- Initial force to close the ring from its free shape to circular one
- Gas pressure forces around the ring
- Asperity contact force with the liner and the groove: Greenwood and Tripp model !" =
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!" is the asperity contact pressure, ℎ is the local ring-liner / ring-groove clearance 

and 0 the standard deviation of the liner / groove surface roughness. !* depends on the properties 
of the ring and the liner / groove material . 1 = 6.804 and Ω = 4
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Ring’s deformations are of the order of 100 #$.

Its length scale is in the order of tens of millimeters. 

Ring-liner and ring-groove contact forces depend on the 
clearances which are within sub-micron level and the on 
boundary conditions like fuel-lube interaction and bridging 
which include length scales around 100 #$ and even lower.

To couple local force generation and ring 
structure deformation, we use a dual grid 
curved beam finite element method.

Ring structural deformations are solved 
with sufficient accuracy using a coarse 
structural mesh and local interactions are 
studied based on a much finer grid. 

For each element: %&
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Use Newton-Raphson algorithm
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III. Improving the accuracy of the solution using Romberg’s Integration:

Third improved solution based on two different mesh size solutions.

!" ≈
4%&'!(,"&' − !',"&'

4%&' − 1
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Approximate the ring twist with 5th order polynomial to have the same 
accuracy for the three coordinates: non linear system of 9. 89:;<= unknowns 
to solve.

Determine the most appropriate order and the effect of the two mesh sizes.

Compare the average relative error with the one of the finer among the two 
meshes considered.

Relative errors are computed by considering the solution obtained with 128 
elements as the exact one.

Simulation for a cylinder with >? = 95AA, no bore distortion.
BC = BD = 1.1 EFG, B; = 1 EFG, ring dimensions: 4 by 2 mm
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5th order accurate for the coordinate solutions: best result expected for P=6.
Almost always improved solution since we are omitting one term for the error.
Eliminating higher order terms than the 6th one may be interesting because of the oscillation of the derivatives: shown 
in the minimum clearance axial location results.
Better improvement of the solution when considering 4 and 8 elements since the term omitted in the residual is bigger.
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Same trend observed for the upper/lower ID/OD clearances since they linearly depend on the ring coordinate 
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Without Romberg’s Integration, we have a less accurate solution (lower order) for the forces and moment distribution.

Romberg’s Integration works slightly better for low order correction.

Less efficient than with the ring coordinate solutions.
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Using 4 and 8 elements with 9th order 
Romberg’s Integration.Using 8 elements
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VI. Improving the accuracy of the solution using Deferred-Correction Approaches:
Introduce a correction term in the Newton-Raphson iteration based on a finer mesh.

We want to solve a non linear system: ! " = 0

Newton-Raphson iteration: "%&' = "% − )! "% *'!("%)

With the correction terms: "%&' = "% − )! "% *' ! "% − -' )!. "%. "%. / − )! "% "% − -0 !.("%.) / − !("%)

Update "%. based on "% using the shape functions.

How to compute )!. "%. "%. / and !.("%.) / based on )!. "%. "%.and !.("%.)?

-Just pick the values at the corresponding nodes.
-Averaging: what coefficients to use?

1 1 10.5 0.5 0.5 0.5

Tuning -' and -0 to reach convergence for the two methods but less accurate solution than without correction for the same 
speed of convergence: too high values needed that make the correction terms negligible.
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Conclusion

-Romberg’s Integration method improved the accuracy of our model specially for the ring coordinate results.
-Better improvement when merging finer meshes.
-Need to consider lower order correction for the force and moment distribution since our solution is less 
accurate for those results than for the ring coordinates.

-Fail to improve the accuracy of our model using Deferred-Correction approaches applied to Newton-Raphson 
algorithm.
-Need to reconsider the averaging when computing !"# $%# $%# & and "#($%#) & from !" $% $% and "($%)
by looking at the ‘physical’ meaning of those terms when solving: ) {+} = "./0 − "2320245 with 6 . =
7
8 + . 9 ) . + . .
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Thank you for your attention

Questions?
Solutions?


