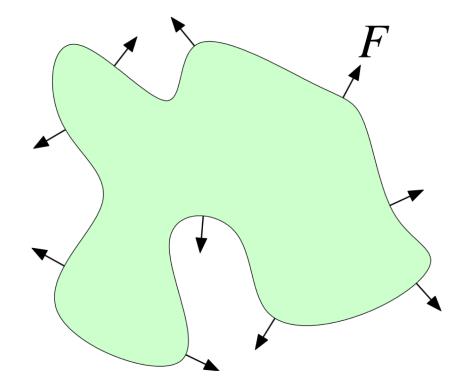
Path Planning for Sailboats in Strong Wind Fields using Level Set Methods

Project 2.29 — Fredrik Samdal Solberg

The Level Set Method

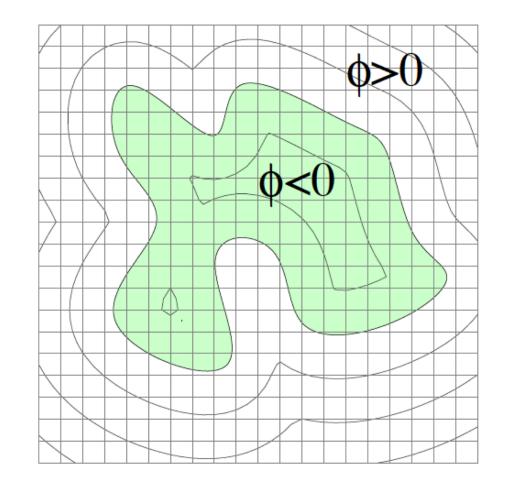
- Method for evolving curves and interfaces
- Propagating curve according to speed function F
- Surfaces in three dimension



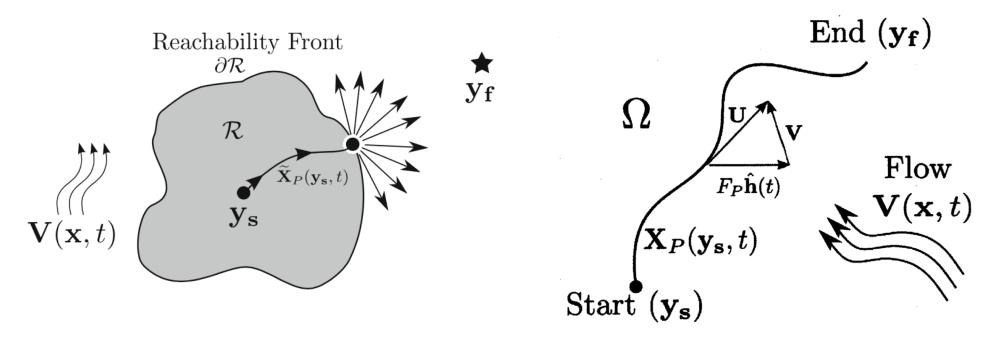
The Level Set Method

- Eulerian approch, evolve interface by solving PDEs
- Represent curve by zero level set of a function, φ(x,t) = 0
- Solve advection equation to propagate φ(x,t)

$$\frac{\partial \phi}{\partial t} + \left(F_v(t) \hat{\mathbf{h}}(t) + \mathbf{V}(\mathbf{x}, t) \right) \cdot \nabla \phi = 0$$



The Level Set Method for Path Planning



$$\frac{\partial \phi}{\partial t} + \left(F_v(t) \hat{\mathbf{h}}(t) + \mathbf{V}(\mathbf{x}, t) \right) \cdot \nabla \phi = 0$$
Flow field

Velocity relative to the flow

The Level Set Method for Path Planning

• Forward time integration: Fractional step method

$$\frac{\phi^{\star} - \phi(\mathbf{x}, t)}{\Delta t / 2} = -F |\nabla \phi(\mathbf{x}, t)|$$

$$\frac{\phi^{\star \star} - \phi^{\star}}{\Delta t} = -\mathbf{V} \left(\mathbf{x}, t + \frac{\Delta t}{2} \right) \cdot \nabla \phi^{\star}$$

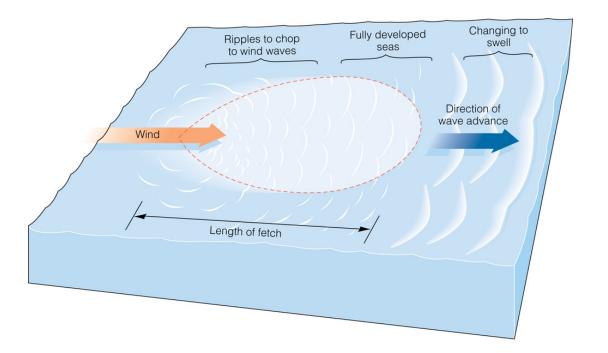
$$\frac{\phi(\mathbf{x}, t + \Delta t) - \phi^{\star \star}}{\Delta t / 2} = -F |\nabla \phi^{\star \star}|$$

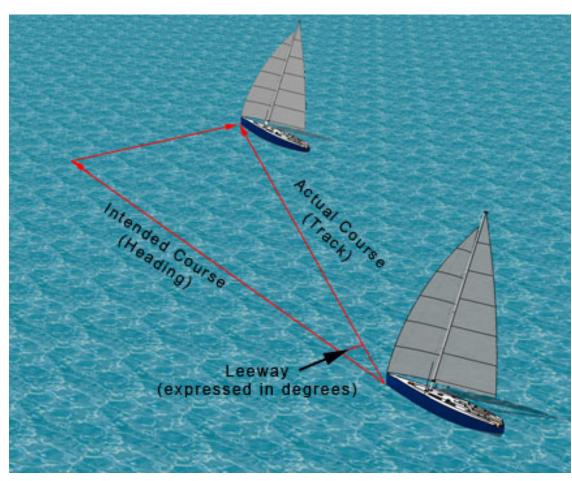
$$\frac{\phi^{\star} - \phi(\mathbf{x}, t)}{\Delta t/2} = -F|\nabla\phi(\mathbf{x}, t)| \qquad \frac{\mathbf{x}(t - \Delta t) - \mathbf{x}(t)}{\Delta t} = -\mathbf{V}(\mathbf{x}, t) - F\underbrace{\frac{\nabla\phi(\mathbf{x}, t)}{|\nabla\phi(\mathbf{x}, t)|}}_{\hat{\mathbf{n}}_{w}(\mathbf{x}', t)}$$

Path Planning for Sailboats in Strong Wind Fields

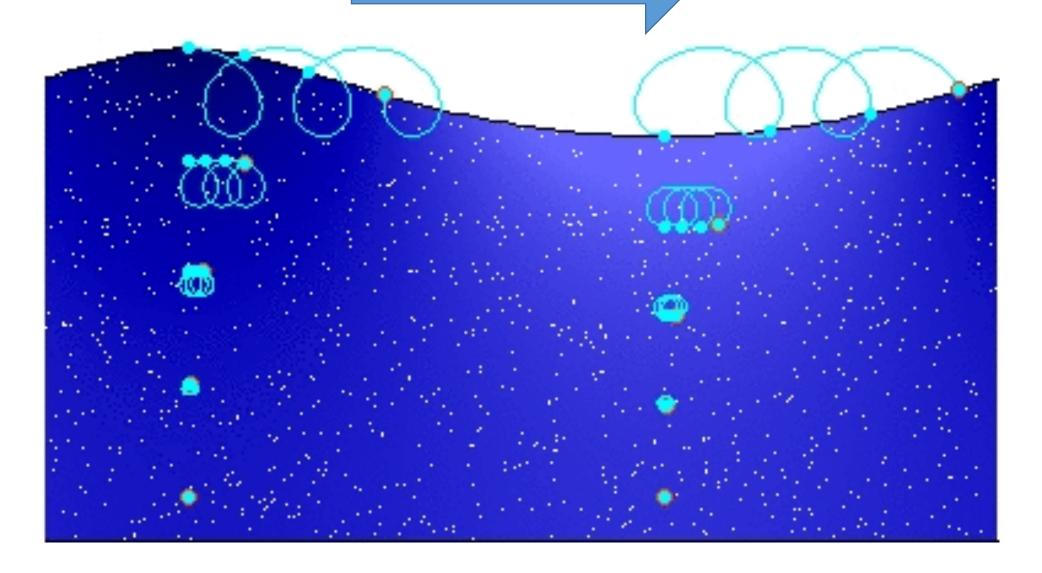
"The motion of the object induced by wind and waves relative to the ambient current"

Allen and Plourde





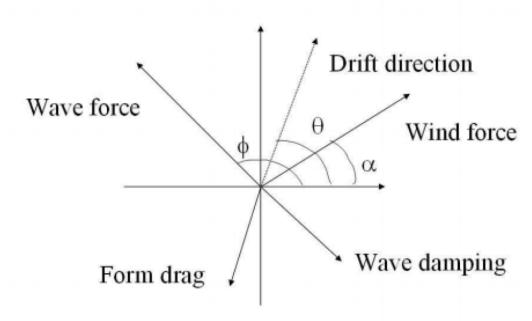
Wind



Modeling of Leeway Drift

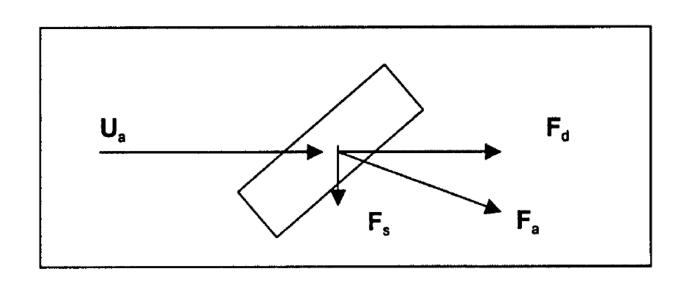
Following U.S. Coast Guard Research and Development Center, Report No. CG-D-06-99, "Modeling of Leeway Drift

```
M' du_b/dt = F_a + F_w + F_c
where:
F_a = air force
F_w = wave force
F_c = water force
M' du_{h}/dt = inertial force
M' is total mass (Lamb, 1932.)
M' = m + km'
      where:
      m is the body mass,
       km' is added mass.
       m' is the mass of fluid displaced by the floating body.
```



Modeling of Leeway Drift

Wind Drag Force



$$F_d = \frac{1}{2} C_d \rho_a A_a U_a^2$$

where:

F_d is the magnitude of the drag force,

C_d is the air drag coefficient for the particular body shape,

 ρ_a is the density of air, and

A_a is the projected frontal area of the floating body above the water's

surface.

Modeling of Leeway Drift

Water Drag Force

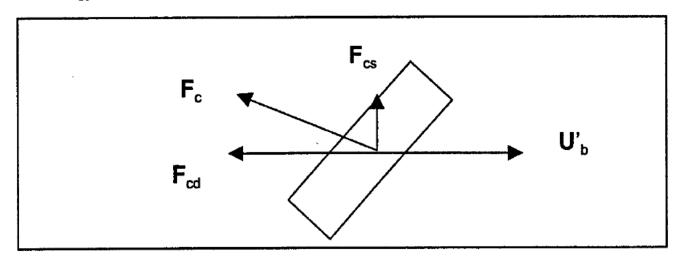
$$F_{cd} = \frac{1}{2} C_{cd} \rho_w A_w U_b^{'2}$$

U_b' = body velocity relative to water (leeway)

F_c= water force

F_{cd}= water drag force (opposite direction of body velocity)

F_{cs} = water lift force (normal to direction of body velocity)



where ρ_w is water density

C_{cd} is an empirical drag coefficient, and

A_w is the projected area of the floating body under the water.

Modeling of Leeway

Wave Force

$$F_w = \frac{1}{2} C_{iw} g \rho_w L_t A^2$$

where: A is wave amplitude,

Ciw is the incident wave reflection coefficient,

g is gravitational acceleration,

 ρ_{w} is the density of $% \left(1\right) =\left(1\right) \left(1\right)$ water,

L_t is the body length scale.

Modeling of Leeway

$$\begin{aligned} & \textbf{F}_{a} + \textbf{F}_{w} + \textbf{F}_{c} = 0 \\ & \textbf{F}_{d} = \frac{1}{2} \textbf{C}_{d} \rho_{a} \textbf{A}_{a} \textbf{U}_{a}^{2} \\ & \textbf{F}_{cd} = \frac{1}{2} \textbf{C}_{cd} \rho_{w} \textbf{A}_{w} \textbf{U}_{b}^{2} \end{aligned}$$

$$\begin{aligned} & \textbf{C}_{iw} \textbf{g} \ \rho_{w} \textbf{L}_{t} \ \textbf{A}^{2} \textbf{C}_{g} / | \ \textbf{C}_{g} \ | \ + \textbf{C}_{d} \ \rho_{a} \textbf{A}_{a} \ \textbf{U}_{a}^{2} | \ \textbf{U}_{a}^{2} | \ = \ \textbf{C}_{cd} \ \rho_{w} \ \textbf{A}_{w} \ \textbf{U}_{b}^{2} | \ \textbf{U}_{b}^{2} | \end{aligned}$$

$$\begin{aligned} & \textbf{F}_{w} = \frac{1}{2} \textbf{C}_{iw} \ \textbf{g} \ \rho_{w} \textbf{L}_{t} \ \textbf{A}^{2} \end{aligned}$$

- Terms on LHS known
- Daniel et al. (2001) simplifies further and estimate the leeway ratio for small objects as

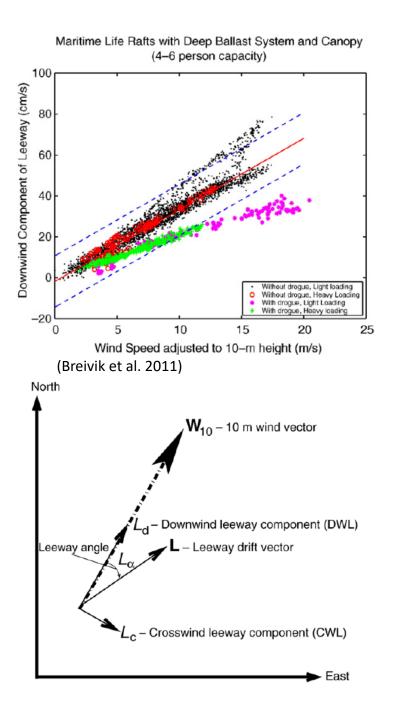
$$\frac{u_{\text{leeway}}}{u_{\text{wind}}} \sim \sqrt{\frac{\rho_{\text{air}} C_D A_{\text{air}}}{\rho_{\text{water}} C_W A_{\text{water}}}}$$

Modeling of Leeway

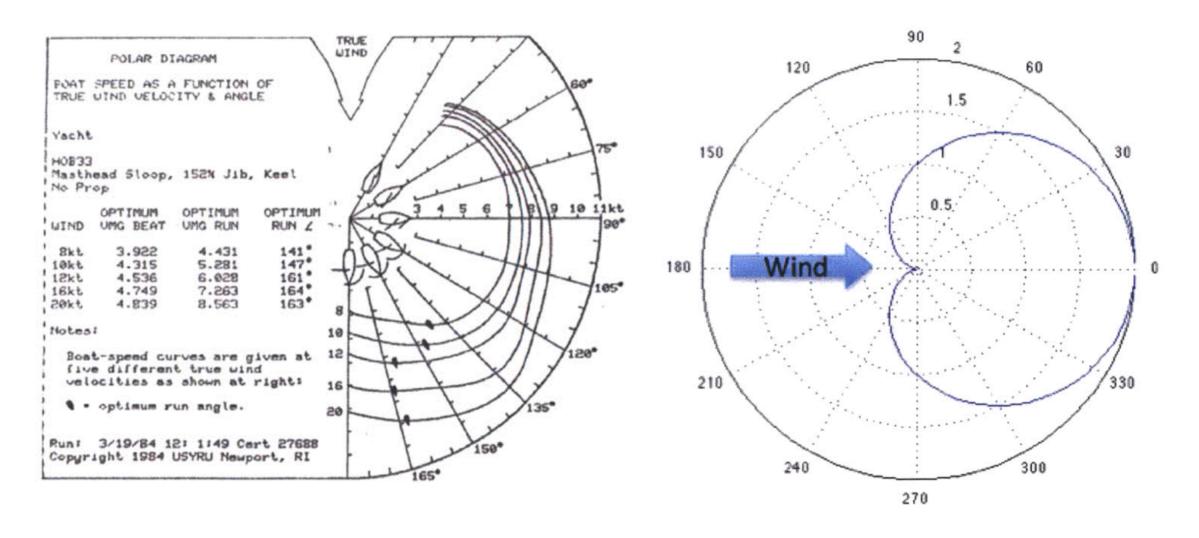
 Field studies indicate an almost linear relationship between the wind speed and the leeway of small objects (0.1 - 25 m) (Breivik et al. 2008)

$$L_d = a_d W_{10} + b_d + \varepsilon_d$$
, Downwind leeway speed (DWL)
 $L_{c+} = a_{c+} W_{10} + b_{c+} + \varepsilon_{c+}$,
Right crosswind speed (CWL+)
 $L_{c-} = a_{c-} W_{10} + b_{c-} + \varepsilon_{c-}$,
Left crosswind speed (CWL-).

 Allen and Plourde have estimated coefficients for 63 different objects, including sailboats



Polar Speed Diagram



Wind direction: East

