Solving Stochastic Advection Diffusion Equation Using HDG Method

Ali Saab

Numerical Fluid Mechanics

Outline

- Stochastic Advection Diffusion Equation
- Hybridized Discontinuous Galerkin Method
 - Background
 - Discretization of The Advection Diffusion Equation
 - Global Equation
 - Examples
- Dynamically Orthogonal Field Equations
 - Definition
 - DO Field Equations for The Advection Diffusion Equation

Stochastic Advection Diffusion Equation

Advection Diffusion Equation

$$\frac{\partial f}{\partial t} + \nabla (uf) = \nabla \cdot (D\nabla f)$$

• The flow field is assumed stochastic, i.e. $u = u(x, t; \omega)$ and $f = f(x, t; \omega)$

The 1D Stochastic Advection Diffusion Equation is

$$\frac{\partial f(\mathbf{x}, t; \omega)}{\partial t} + \frac{\partial \left(u(\mathbf{x}, t; \omega) f(\mathbf{x}, t; \omega) \right)}{\partial x} = \frac{\partial}{\partial x} \left(\frac{D(\mathbf{x}, t) \partial f(\mathbf{x}, t; \omega)}{\partial x} \right)$$

Hybridized Discontinuous Galerkin Method

- Finite Element Methods are are accurate but slow
- HDG is competitive to CG while retaining the properties of DG
- Each element can be solved locally given the boundary conditions
- Solving for the boundary condition is possible by equating the fluxes on each edge to the total flux into the system

Spatial Discretization – 1D

- Definitions
 - $(a,b)_{\Delta x_i} = \int_{x_i}^{x_{i+1}} ab \ dx$
 - $\lambda = \hat{f}$ is the value of f at the boundary
 - $f = \sum_{i=1}^{N_e} f_i \theta_i$
- Let θ be a test function, then multiply the equation by the test function and integrate

$$\int_{x_i}^{x_{i+1}} \frac{\partial f}{\partial t} \theta dx + \int_{x_i}^{x_{i+1}} \frac{\partial (uf)}{\partial x} \theta dx - \int_{x_i}^{x_{i+1}} \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x} \right) \theta dx = 0$$

Spatial Discretization -1D

Integrate the diffusion term by parts twice

$$\int_{x_i}^{x_{i+1}} \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x} \right) \theta dx = D \frac{\partial \hat{f}}{\partial x} . \vec{n} \theta \Big|_{x_i}^{x_{i+1}} - D \frac{\partial f}{\partial x} . \vec{n} \theta \Big|_{x_i}^{x_{i+1}} + \int_{x_i}^{x_{i+1}} \frac{\partial}{\partial x} \left(D \frac{\partial f}{\partial x} \right) \theta dx$$

The Diffusion is modeled as follows

$$D\frac{\partial \hat{f}}{\partial x} = D\frac{\partial f}{\partial x}.\vec{n} - \tau(f - \lambda)\vec{n}$$

Spatial - time Discretization – 1D

• The strong form of the Advection Diffusion Equation is

$$\frac{(f,\theta)_{\Delta x_{i}}^{k+1}}{\Delta t} + \tau \theta f^{k+1} \Big|_{x_{i}} + \tau \theta f^{k+1} \Big|_{x_{i+1}} - \left(\frac{\partial}{\partial x} \left(D\frac{\partial f}{\partial x}\right), \theta\right)_{\Delta x_{i}}^{k+1} \\
= \tau \lambda^{k+1} \theta \Big|_{x_{i}} + \tau \lambda^{k+1} \theta \Big|_{x_{i+1}} - \left(\frac{\partial (uf)}{\partial x}, \theta\right)_{\Delta x_{i}}^{k} + \frac{(f,\theta)_{\Delta x_{i}}^{k}}{\Delta t}$$

Final Finite Element Equation

$$f_{i}^{k+1} \left[\frac{(\theta_{i}, \theta_{j})_{\Delta x_{i}}}{\Delta t} + \tau \theta_{i} \theta_{j} \Big|_{x_{i}} + \tau \theta_{i} \theta_{j} \Big|_{x_{i+1}} - \left(\frac{\partial}{\partial x} \left(D \frac{\partial \theta_{i}}{\partial x} \right), \theta_{j} \right)_{\Delta x_{i}} \right]$$

$$= \tau \lambda^{k+1} \theta_{j} \Big|_{x_{i}} + \tau \lambda^{k+1} \theta_{j} \Big|_{x_{i+1}} - \left(\frac{\partial \left(u f^{k} \right)}{\partial x}, \theta_{j} \right)_{\Delta x_{i}} + \frac{\left(f^{k}, \theta_{j} \right)_{\Delta x_{i}}}{\Delta t}$$

Local Finite Element Equation Summery

$$A_{ij}^{local} = \frac{(\theta_i, \theta_j)_{\Delta x_i}}{\Delta t} + \tau \theta_i \theta_j \Big|_{x_i} + \tau \theta_i \theta_j \Big|_{x_{i+1}} - \left(\frac{\partial}{\partial x} \left(D \frac{\partial \theta_i}{\partial x}\right), \theta_j\right)_{\Delta x_i}$$

$$b_j^{local} = \tau \lambda^{k+1} \theta_j \Big|_{x_i} + \tau \lambda^{k+1} \theta_j \Big|_{x_{i+1}} - \left(\frac{\partial (uf^k)}{\partial x}, \theta_j \right)_{\Delta x_i} + \frac{(f^k, \theta_j)_{\Delta x_i}}{\Delta t}$$

$$A^{local}f = b^{local}$$

Global Equation

- Definition
 - $[[a.\vec{n}]] = a^+.\vec{n}^+ + a^-.\vec{n}^-$
 - $< a, b>_e = \int_e ab de$
 - $< a, b>_{\epsilon} = \sum_{e \in \epsilon} < a, b>_{e}$
- By Equating the fluxes of the boundary to the total flux we arrive at the global Flux Equation

$$\left\langle \left[\left[\left(D \frac{\partial f}{\partial x} . \vec{n} - \tau (f - \lambda) \vec{n} \right) . \vec{n} \right] \right], \theta_{\epsilon} \right\rangle_{\epsilon} = \langle g_N, \theta_{\epsilon} \rangle_{\epsilon}$$

Global Finite Element Equation

- Assume $f \approx f^F + \sum f^{\lambda_i}$
- f^F is the effect of the forcing terms only
- f^{λ_i} is the effect of the boundary only

$$A_{ij}^{global} = \left\langle \left[\left[\left(D \frac{\partial f^{\lambda_i}}{\partial x} . \vec{n} - \tau (f^{\lambda_i} - \delta_{ij} \theta_{\epsilon,i}) \vec{n} \right) . \vec{n} \right] \right], \theta_{\epsilon,j} \right\rangle_{\epsilon}$$

$$b_j^{global} = \langle g_N, \theta_{\epsilon,j} \rangle_{\epsilon} - \left\langle \left[\left[\left(D \frac{\partial f^F}{\partial x} . \vec{n} - \tau(f^F) \vec{n} \right) . \vec{n} \right] \right], \theta_{\epsilon,j} \right\rangle_{\epsilon}$$

$$A^{global}\lambda = b^{global}$$

Example 1

Example 2

Dynamically Orthogonal Field Equations

The response of the dynamical system is assumed to have the form

$$f(\mathbf{x}, t; \omega) = \bar{f}(\mathbf{x}, t) + \sum_{i=1}^{r_f} \zeta_i(t; \omega) f_i(t, x) = \bar{f} + \zeta_i f_i$$

• And the stochastic term u can be written as

$$u(\mathbf{x}, t; \omega) = \bar{u}(\mathbf{x}, t) + \sum_{k=1}^{n} \beta_k(t; \omega) u_k(t, x) = \bar{u} + \beta_k u_k$$

• ζ_i and β_k are zero mean stochastic processes

DO Condition

The DO condition is defined as

$$\left\langle \frac{\partial f_i(\mathbf{x}, t)}{\partial t}, f_j(\mathbf{x}, t) \right\rangle = 0$$

The above condition implies

$$\frac{\partial}{\partial t} \left\langle f_i(\mathbf{x}, t), f_j(\mathbf{x}, t) \right\rangle = 0$$

• $\{f_i(x,t)\}_{i=1}^{s}$ are deterministic fields which are initially orthonormal

Do Field Equations For The Advection Diffusion Equation

$$\frac{\partial \bar{f}}{\partial t} = \frac{\partial \bar{f}}{\partial x} \left(\frac{\partial D}{\partial x} - \bar{u} \right) + D \frac{\partial^2 f}{\partial x^2} - \frac{\partial f_i}{\partial x} u_k Cov(\beta_k, \zeta_i)$$

$$\frac{\partial \zeta_{j}}{\partial t} = -\zeta_{i} < \bar{u} \frac{\partial f_{i}}{\partial x}, f_{j} > -\beta_{k} < \frac{\partial \bar{f}}{\partial x} u_{k}, f_{j} > -\beta_{k} \zeta_{i} < u_{k} \frac{\partial f_{i}}{\partial x}, f_{j} >$$

$$Cov(\beta_{k}, \zeta_{i}) < \frac{\partial f_{i}}{\partial x} u_{k}, f_{j} > +\zeta_{i} < \frac{\partial D}{\partial x} \frac{\partial f_{i}}{\partial x}, f_{j} > +\zeta_{i} < D \frac{\partial^{2} f_{i}}{\partial x^{2}}, f_{j} >$$

Do Field Equations For The Advection Diffusion Equation

$$\begin{split} \frac{\partial f_{j}}{\partial t} &= \frac{\partial f_{j}}{\partial x} \left(\frac{\partial D}{\partial x} - \bar{u} \right) + D \frac{\partial^{2} f_{j}}{\partial x^{2}} \\ &+ < \frac{\partial f_{l}}{\partial x} \left(-\frac{\partial D}{\partial x} \bar{u} \right) - D \frac{\partial^{2} f_{l}}{\partial x^{2}}, f_{j} > f_{j} Cov(\zeta_{l} \zeta_{i}) Cov^{-1}(\zeta_{j}, \zeta_{i}) \\ &\left(< \frac{\partial \bar{f}}{\partial x} u_{k}, f_{j} > f_{j} - \frac{\partial \bar{f}}{\partial x} u_{k} \right) Cov(\beta_{k}, \zeta_{i}) Cov^{-1}(\zeta_{j}, zeta_{i}) \\ &+ < u_{k} \frac{\partial f_{l}}{\partial x}, f_{j} > f_{j} M_{3}(\beta_{k}, \zeta_{l}, \zeta_{i}) Cov^{-1}(\zeta_{j}, \zeta_{i}) \\ &- u_{k} \frac{\partial f_{j}}{\partial x} M_{3}(\beta_{k}, \zeta_{l}, \zeta_{i}) Cov^{-1}(\zeta_{j}, \zeta_{i}) \end{split}$$

Future Work

• Solve higher dimensional problems (2D, 3D) using HDG methods

Solve the DO Field Equations

Compare the results with Monte Carlo Simulations