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Stochastic Advection Diffusion Equation

* Advection Diffusion Equation

o f B
5+ V(uf) = V.(DV/)

* The flow field is assumed stochastic, i.e. u = u(x, t;w) and f = f(x,t; w)

* The 1D Stochastic Advection Diffusion Equation is
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Hybridized Discontinuous Galerkin Method

* Finite Element Methods are are
accurate but slow

* HDG is competitive to CG while
retaining the properties of DG

* Each element can be solved locally
given the boundary conditions

* Solving for the boundary condition is
possible by equating the fluxes on
each edge to the total flux into the
system
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Spatial Discretization — 1D

* Definitions
* (@,b)px; = f;i“ ab dx
« 1 = f is the value of f at the boundary

* f =X fi6;

* Let O be a test function, then multiply the equation by the test
function and integrate

Tt of i O(uf) il 9 8f
/x' a@d +/:c7; o de—/mi %< o Odx = 0

(/




Spatial Discretization -1D

* Integrate the diffusion term by parts twice
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* The Diffusion is modeled of
D=L i
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Spatial - time Discretization — 1D

* The strong form of the Advection Diffusion Equation is
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* Final Finite Element Equation
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Local Finite Element Equation Summery
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Global Equation

e Definition
. [[a.fi]] —at At +a .7

* <a,b>,= fe ab de
) <a’b>E=Ze€e<a;b >0

* By Equating the fluxes of the boundary to the total flux we arrive at
the global Flux Equation

([[(p%=rts-na) ] ) =< v



Global Finite Element Equation
* Assume f =~ fF 4+ Y fA

 fFis the effect of the forcing terms only

. f’li is the effect of the boundary only
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Example 2
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Dynamically Orthogonal Field Equations

* The response of the dynamical system is assumed to have the form

Tf
1=1

e And the stochastic term u can be written as

L)
u(x,tw) = A(x,t) + > Bt w)ur(t,z) =1+ Bru
k=1
* {; and [}, are zero mean stochastic processes



DO Condition

e The DO condition is defined as

8fi(X,t) o
< ot 7fj(X7t)>_O

* The above condition implies

0
a<fi(xvt)7 fj(xat)> =0

 {fi(x,t)};=1 are deterministic fields which are initially orthonormal




Do Field Equations For The Advection
Diffusion Equation
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Do Field Equations For The Advection
Diffusion Equation
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Future Work

* Solve higher dimensional problems (2D, 3D) using HDG methods
* Solve the DO Field Equations

* Compare the results with Monte Carlo Simulations



