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A droplet of heavy oil (900kg/m3) 
falling under gravity in water 
(250kg/m3). 
Conditions: 700K, 25MPa. 
Oil partially miscible in water.

Grid 400*800 uniform squares.
Simulation performed on 16 
cores for 20 hours.

Dimensions: 4mm*8mm
Droplet initial diameter: 1mm
Total real time simulated: 0.15s

C00 in kg/m3

The code was developed within 
the OpenFOAM[1] (v. 2.3.0) 
framework at the Reacting Gas 
Dynamics Laboratory at MIT[2].



The Volume of Fluid Method

Lagrangian methods: different meshes for 
different phases. Meshes evolve in time.

Eulerian methods: Fixed grid. 
Examples: VoF, Level-Set methods



The Volume of Fluid Method

• The volume fraction as a field variable –
that is the only handle we have on which 
phase is where.

• Single set of volume-averaged (using 
volume fraction) field equations for u, p, 
T, species concentration, etc.

• Things get complicated when interfacial 
mass transfer is present – partially 
miscible fluids.



Advecting the volume fraction

Algebric Advection Geometric Advection

Solve a finite-volume conservation equation for
volume fraction (f). In above equation, fluids are
incompressible and there is no mass transfer

Leads to smearing of the interface due to 
numerical diffusion. In above figure, f changes 
from 0 to 1 over 4 cells.



Reconstructing the interface

Piece-wise linear interface calculation
(PLIC)[4]

Simple linear interface calculation
(SLIC) [4]



Flux polygons - v1[4]

Operator-splitting schemes:

a. Advect in x direction

b. Advect in y direction

Strang splitting can improve 
order of accuracy

Lower order schemes can lead 
to formation of artificially 
deformed interfaces and 
whisps.



Flux polygons – v2[4]

‘Unsplit’ schemes:

c. Naïve approach. causes 
double counting.

d. Use corner velocities to 
construct the flux polygon
Strang splitting can improve 
order of accuracy

Challenges:
Keeping volume fraction 
between 0 and 1.
The fluxed volume may not 
correspond to a divergence-
free velocity field.



Investing in a geometric toolbox[5]

We can draw on developments in computational geometry to help in 
constructing flux polygons in 3D.

1. Intersection of a plane and a line.

2. Intersection of 2 polygons in 3D

3. Intersection of a plane and a polyhedron – clipping and capping

4. Intersection of 2 polyhedral.



The  clipping and capping algorithm[5]



Flux polyhedrons in 3D[6]

Using vertex velocities creates non-
overlapping flux polygons.

The faces of the flux polyhedron need not
be planar.

Divide the flux polyhedron into tetrahedra
(simplexes) to calculate the volume.
‘Tessellation’ of flux polygons/polyhedral.



Two levels of discretization are used to 
calculate the volume. [6]

The levels A and B ensure non-overlapping 
fluxes. Going from B -> C needs some 
consistency. Difficult for arbitrary meshes (non-
hexahedral cells).



Concave Flux polygons[6]

Divide the flux polygon into
triangles, and classify them as
positive fluxes and negative
fluxes.

This needs a clever ordering of
the vertices of the polygon so
that the clockwise ordering of
vertices implies a positive flux.



Phase fluxes from the flux polygon[6]

The algorithm cuts the flux polygon with cell faces , and by the interface in each cell. Tessellation is done 
after every step. 



Adjusting for discreet mass conservation[6]

The volume of the flux polygon generally does not 
exactly match the calculated velocity field at the cell 
face-center.

An additional simplex is added to the trailing face of 
the polygon to get the two volumes to be equal. 
This ensures discreet mass conservation, provided 
the calculated velocity field does so.



The effect of surface tension – increased by factor of 3 here



Total interfacial area
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Fluctuations in interfacial 
area for the low surface 
tension case have a 
frequency of about 30Hz. 

A Strouhal number 
calculation based on flow 
past a cylinder predicts a 
frequency of 20Hz



Grid convergence study
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Low resolution: 100*200 
Medium resolution: 200*400 
High resolution: 400*800



Order of convergence

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30

O
rd

er
 o

f 
co

n
ve

rg
en

ce

Time step

The scheme is overall 1st order 
accurate in space



Order of convergence
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dt dt/2

A fully explicit scheme is used.

The advection CFL condition is stronger
than diffusion CFL condition as mass
diffusivities is small in this problem.

Thus dt ~ dx,dy
To ensure that time discretization
errors are no the dominant error
terms, a simulation was run at half the
admissible courant number. The
solution did not change.

Thus, the spatial order of accuracy is
indeed 1.



References

1. Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational continuum mechanics 
using object-oriented techniques. Computers in physics, 12(6), 620-631.

2. http://web.mit.edu/rgd/www/

3. He, P., & Ghoniem, A. F. (2017). A sharp interface method for coupling multiphase flow, heat transfer and 
multicomponent mass transfer with interphase diffusion. Journal of Computational Physics, 332, 316-332.

4. Rider, W. J., & Kothe, D. B. (1998). Reconstructing volume tracking. Journal of computational physics, 141(2), 112-152.

5. Maric, T., Marschall, H., & Bothe, D. (2013). voFoam-a geometrical volume of fluid algorithm on arbitrary unstructured 
meshes with local dynamic adaptive mesh refinement using OpenFOAM. arXiv preprint arXiv:1305.3417.

6. Owkes, M., & Desjardins, O. (2014). A computational framework for conservative, three-dimensional, unsplit, 
geometric transport with application to the volume-of-fluid (VOF) method. Journal of Computational Physics, 270, 587-
612.


