Adapting the 2.29 FV Framework for
Simple Non-Newtonian Fluid Flows

2.29 Numerical Fluid Mechanics
Spring 2018

Anoop Rajappan
May 16,2018



Non-Newtonian Fl

uids

L Many non-Newtonian fluids consist of dissolved polymer molecules — very long chains of high
molecular weight. These act as an “entropic spring” that gives rise to elasticity.

/

Molecules are initially ... but are stretched and
coiled ... deformed by flow ... pi

U A few distinctively non-Newtonian phenomena:

Q Shear thinning O Viscoelasticity

|

“Open Siphon” effect
0.5% Polyethylene oxide

... and relax back to
M the coiled state by

thermal motion.
M

energy via their
configuration.

J Normal stresses under shear

“Rod climbing” effect
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Constitutive Equations for Polymeric Liquids

L Newtonian fluid O Viscoelastic fluid O A simple model for a
. “Maxwell liquid” polymer solution
—AWWWW—s
s
e Ge

Purely viscous

_ . Tp  Tp , -
T =17 7 y=-F4 E Relaxation I I

n time
dr, o= Ts
=1, +4 =ny TG
t P T=T, +7T,
O Differential Constitutive Equations Shear rate tensor

. T
O Upper Convected Maxwell (Oldroyd-B) Model ‘{V‘”(V”) }

e 1 Upper convected (contravariant) derivative:
| T=7.+7T T =Ny o+ A, =7 1V 0
| oT > i P = T, = aTPJru-VTP—(Vu)T-rP—TP-VU

b o e o — — — — — — — — — e e

U Giesekus Model

Nonlinear term removes stress singularity due to unbounded extension of the polymer “spring”.



Constitutive Equations for Polymeric Liquids

L Newtonian fluid O Viscoelastic fluid O A simple model for a
. “Maxwell liquid” polymer solution
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O Conformational Constitutive Equations
Utilizes a conformation tensor that tracks “how deformed polymer chains are” on average.

L FENE-CR Model (Chilcott and Rallison, 1988)

Specifically formulated for
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Numerical Implementation — Differential Models

O Although a single evolution equation for extra stress tensor can be
derived, the solvent and polymeric stresses were kept separate.

This “Elasto-Viscous Stress Splitting” (EVSS) helps in stability.

T=7; +7Tp
Ts=Ns Y

J Three stress components in 2D evolved as unknowns at the pressure node locations.
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Initially zero polymer stress at all locations: true if material is fully rads_tvem

relaxed at time zero.
O The incremental projection method with rotational correction is used.
L No changes needed for (Newtonian) solvent stress.
O Additional polymer stress term added as source term in the predictor step.
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Numerical Implementation — Conformational Models

 Three conformation tensor components are evolved as unknowns at the pressure node locations.
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Initially, conformation at all locations set to identity.
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L Advection using mexed scalar

LA
ot

oA
ot

advection routines

L Red terms not directly
available on a staggered grid.

Grad2D_uv2.m

[ Stresses are computed from the conformation tensor, and inserted into the predictor step as
a source term.
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u(x)=16x’(1-x)"  Convergence: LDC

Time step: Reference solution:
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Test Case |:Sudden Expansion

4a

Reynolds number

. |
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Viscoelastic parameters: L
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The Oldroyd-B solver was used with UWV advection for stability.

The recirculation length decreases due to viscoelasticity, except for Giesekus model.
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Test Case ll: Flow Past Cylinder

Reynolds number
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The Oldroyd-B solver was
unstable even with UW.
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Test Case ll: Flow Past Cylinder
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Test Case lll: Rising Buoyant Bubble

Geometry
parameters:
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Test Case IV: Lock Exchange
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High Weissenberg Number Problem

Jd Ma.ny FE, FV and FM methods fail at modest Even a linear velocity profile can lead to
Wi values — between | and 10. exponential stress profiles in viscoelastic fluids!
O Called the High Weissenberg Number u(x) = £x

Problem or HWNP.

L Due to the inability of simple polynomial
approximations to capture exponential Stagnation points, sharp corners, discontinuous
profiles in polymer stress. BC’s are all potentially problematic.

= Al(t) = Al(0) e*

Solution is to evolve the logarithm of the conformation tensor, rather than the tensor itself.

Log Conformation Formulation (Fattal and Kupferman,2004).

O Involves additional cost of diagonalizing the conformation tensor, and decomposing
the velocity gradient along the principal directions of the conformation tensor.



Summary

Modified the 2.29 FV Code to implement two differential
and two conformational viscoelastic constitutive equations:

Q0 Oldroyd B
O Giesekus model
O FENE-P
O FENE-CR
Simulated simple test cases of steady and unsteady flows.

Can be easily extended to include polymer diffusion and
spatial variation in viscoelastic properties.

Overcoming the HVWNP would probably require using a log
conformation approach.



