

Introduction to the Linear Panel Method WAMIT

Emma Edwards

WaveAnalysisMIT (WAMIT)

- Created in 1987 at MIT by Dr. Chang-Ho Lee and Prof. J. Nicholas Newman
- Computes hydrodynamic properties of structures in waves
- Uses the Boundary Integral Equation Method, or the Panel Method

Panel Methods: problem statement

- Assumptions: Linear
 - Fluid is incompressible, inviscid
 - Flow is irrotational
 - Assume small motions relative to wavelength and body
- Laplace equation

$$\nabla^2 \Phi = 0$$

- Linear; superposition of solutions
- Typical solutions: source, sink, dipole
- Velocity potential

$$\Phi\left(\overrightarrow{x},t\right) = Re\{\phi\left(\overrightarrow{x}\right)e^{i\omega t}\}$$

Panel Methods: problem statement, cont'd

 Decompose velocity potential (incident, diffraction, radiation)

$$\phi = \phi_D + \phi_R = \phi_I + \phi_S + \phi_R$$

- $ullet \phi_I$ is the velocity potential of the incident wave
- ϕ_S is the diffraction potential (due to disturbance of wave field in order to satisfy no-flux):

$$\frac{\partial \phi_S}{\partial n} = -\frac{\partial \phi_I}{\partial n}$$
 on S_b

• ϕ_R is the radiation potential (due to the body creating waves, even in absence of an incident wave)

$$\frac{\phi_R = i\omega \sum_{j=1}^6 \xi_j \phi_j}{\frac{\partial \phi_j}{\partial n}} = n_j \text{ on } S_b$$

where ξ_j is the complex amplitude of body oscillatory motion and ϕ_j is the corresponding unit-amplitude radiation potential

Panel Methods: Overview

- 1. Use Green's theorem to derive integral equations for velocity potentials on the body boundary
- 2. Discretize the body surface by a large number N of panels
- 3. The sources and dipole moments are assumed constant on each panel \rightarrow total of N unknowns
- 4. The potential is evaluated at the centroid of each panel and set equal to the normal incident potential
- 5. Solve system of equations
- 6. Compute required forces and moments

Step 1: using Green's theorem to derive integral equations

- $G(\overrightarrow{x}; \overrightarrow{\xi})$ = the velocity potential at point \overrightarrow{x} due to a periodic source with strength -4 π located at point $\overrightarrow{\xi}$, satisfying free-surface boundary condition, bottom boundary condition, and radiation condition (Green function)
- Green's theorem: from Gauss' divergence theorem

$$2\pi\phi_{j}\left(\overrightarrow{x}\right) + \iint_{S_{b}}\phi_{j}\left(\overrightarrow{\xi}\right) \frac{\partial G\left(\overrightarrow{\xi};\overrightarrow{x}\right)}{\partial n_{\xi}} d\overrightarrow{\xi} = \iint_{S_{b}}n_{j}G\left(\overrightarrow{\xi};\overrightarrow{x}\right) d\overrightarrow{\xi}$$

$$2\pi\phi_D\left(\overrightarrow{x}\right) + \iint_{S_b} \phi_D\left(\overrightarrow{\xi}\right) \frac{\partial G\left(\overrightarrow{\xi};\overrightarrow{x}\right)}{\partial n_{\xi}} d\overrightarrow{\xi} = 4\pi\phi_I\left(\overrightarrow{x}\right)$$

Step 2: discretize the body surface

- Discretize the shape into quadrilateral or triangular panels
- I use Chebyshev polynomials as basis functions to represent any shape of surface (optimization)
- Chebyshev polynomials

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

Represent radius r and depth z as functions of parameter s
(allow for slope discontinuities), and top radius as a
function of parameter t

$$r_N(s) = \sum_{n=0}^{N} a_n T_n(s)$$

$$z_N(s) = \sum_{n=0}^{N} b_n T_n(s)$$

$$T_N(t) = \sum_{n=0}^{N} c_n T_n(t)$$

Step 2: discretize the body surface, examples

Hemisphere: use Galerkin method to find coefficients

General shapes (axisymmetric vs. not)

Steps 3-5

- Source is assumed constant over each panel
- The potential is evaluated at the centroid of each panel
 - Radiation potentials

$$2\pi\phi_i + \sum_{k=1}^N D_{ij}\phi_k = \sum_{k=1}^N S_{ik} \left(\frac{\partial\phi}{\partial n}\right)_k$$

Diffraction potential

$$2\pi\phi_i + \sum_{k=1}^{N} D_{ij}\phi_k = 4\pi \left(\phi_I\right)_i$$

where

$$D_{ik} = \iint_{s_k} \frac{\partial G(\overrightarrow{\xi}; \overrightarrow{x_i})}{\partial n_{\xi}} d\overrightarrow{\xi} \qquad S_{ik} = \iint_{s_k} G(\overrightarrow{\xi}; \overrightarrow{x_i}) d\overrightarrow{\xi}$$

• System of N equations is solved, and $\phi = \Sigma_{i=1}^N \phi_i$

WAMIT: properties calculated (for range of frequencies)

- Added-mass and damping coefficients
- Exciting forces
- Body motions in waves
- Hydrodynamic pressure
- Free-surface elevation

Example: Convergence of hemisphere properties

Added mass and damping coefficients

$$A_{ij} - \frac{i}{\omega} B_{ij} = \rho \iint_{S_b} n_i \phi_j dS$$

Example: hemisphere properties

Exciting force

$$X_{i} = -i\omega\rho \iint_{S_{b}} \left(n_{i}\phi_{I} - \phi_{i} \frac{\partial\phi_{I}}{\partial n} \right) dS$$

Hydrodynamic pressure

$$p = -\rho \frac{\partial \phi}{\partial t}$$

$$\phi = \phi_D + i\omega \Sigma_{j=1}^6 \xi_j \phi_j$$

Free-surface elevation

$$\eta = -\frac{1}{g} \left(\frac{\partial \phi}{\partial t} \right)_{z=0}$$

Example: hemisphere properties

Velocity field

$$\overrightarrow{V} = \nabla \phi$$

Quiver plot in MATLAB to show the flow field

