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Commercial NPC Inline Emitter
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DEM Model Validation: Bulk Flow

Study Parameters

Total Inlet Pressure: 50,000

Outlet Pressure: 0 Pa

Standard k-ε turbulence
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Realizable k- ε two layer



DEM Model Overview
• Bulk Flow: 2nd order implicit unsteady 

solver; 2nd order convection, segregated 

(SIMPLE) P-V coupling

• Turbulence: Realizable k-ε turbulence with 

two-layer all y+ wall treatment

• Particles: Lagrangian multiphase DEM 

spherical particles; pressure gradient and 

drag forces; two-way coupling

• Hertz Mindlin no-slip contact model with 

frictional coefficients as defined in [1]
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Solid and water properties as defined in [1]



DEM Model Validation: Particle Tracks
• Study ran simulation for a time of 1s with a time step of 0.001s [1]; due to 

computational limitations, a time step of 0.02s was used

• Particle flow rate selected as 100 particles/sec
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Particle trajectories [1]

50 µm

100 µm

150 µm



DEM Model Validation: Particle Tracks

• Simulated trend matches trend from study 

[1] and other publications [2]

– Would expect a longer residence time 

because recirculating particle tracks 

were not removed from average

– Relatively small number of simulated 

particles may skew absolute values
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Particle 

Diameter (µm)

Average 

Residence 

Time (s)

Average 

Residence 

Time of 

Particles not in 

Recirculation 

(s) [1]

65 0.0173 0.019

100 0.0322 0.024

150 0.115 0.044



Model Validation: Steady State Results (One 

Phase) for Tested Emitters

*Flow is modeled as turbulent in published literature ([1], [2], [3]); Realizable k-ε selected for robustness after extensive comparison Page 8

1.6 L/hr emitter

Modeled fluid domain

4 L/hr emitter

0.8 L/hr emitter



Model Validation: Steady State Results (One 

Phase) for Tested Emitters

*Flow is modeled as turbulent in published literature ([1], [2], [3]); Realizable k-ε selected for robustness Page 9

3D Segregated flow (SIMPLE) solver with 2nd order convection, RANS realizable k-ε* two 

layer with all y+ treatment and wall y+ <1

• For computational efficiency, simulated domain did not include filter or pipe flow (added resistance)

– Simulation trends match expectations

• Mesh used curvature refinement and volume transition limiters and could not be refined evenly to calculate order of 

convergence

• Relative error between grids: ~0.01 m/s
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DEM Model Results
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Particle tracks in 1.6 L/hr emitter

Velocity field in 1.6 L/hr emitter
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Comparing Clogging in Emitters with 

Different Flow Rates
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Characteristic length

• 𝑡𝑐ℎ𝑎𝑟 =
𝐿𝑐ℎ𝑎𝑟𝑎𝑐𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐

𝑣𝑜𝑢𝑡𝑙𝑒𝑡

• 𝑡∗ = (
𝑡𝑎𝑣𝑔 𝑠𝑎𝑛𝑑 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒

𝑡𝑐ℎ𝑎𝑟
)

• Defined dimensionless time to 

compare data between emitters of 

different flow rates
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Comparing Clogging in Emitters with 

Different Flow Rates
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• Trends appears correlated to flow rate; pressure variations in experiment may have skewed data

• Additional simulation and experimental data necessary to evaluate numerical confidence and 

draw conclusive trends

• Future work: How does the simulated particle concentration affect results?
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Experimental data: Trang Luu

Experiments 

used 180 µm 

aluminum grit
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Flow Field and Clogging Behavior
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Velocity filtered into bulk velocity 

and velocity in recirculation areas
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Lower flow rates in the recirculation region may correspond to improved clogging resistance
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Design Applications

Page 16

(2) Novel path designs that 
avoid low flow velocity regions

(1) Path design of traditional 
labyrinth channels using Sr as a 
design factor to minimize

– Simulation requires 10 minutes, 

while DEM simulation requires 6 

hours

– Published studies in literature on 

optimizing design focus on DEM 

and experimental studies, [7]
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Design Applications
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(2) Novel path designs that 
avoid low flow velocity 
regions

(1) Path design of traditional 
labyrinth channels using Sr as a 
design factor to minimize

– Simulation requires 10 minutes, 

while DEM simulation requires 6 

hours

– Published studies in literature on 

optimizing design focus on DEM 

and experimental studies, [7]

[7] Jun Zhang, Wanhua Zhao, and Yiping Tang.  “Structural optimization of labyrinth-channel emitters

based on hydraulic and anti-clogging performances”  Irrigation Science.  2011.
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Design: Flow Path Around Cylinders
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No large zones with low flow velocity
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Design: Flow Path Around Cylinders

• The cylinder flow path has a significantly lower 
average residence time for particles than the 
traditional design, even at a lower flow rate
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Emitter

Outlet 

Velocity 

(m/s)

Average 

Residence 

Time (s)

Length 

Scale (m)

Characteristic 

Time (s) t*

Turbo 

Excel 0.649 0.0836 0.023 0.035 2.402

Cylinders 0.54 0.02139 0.021 0.039 0.545
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NPC Emitter Model with Filter and Pipe [3]
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Clogging Experimental Set-Up Overview

• Clogging tests use different recommended times for 

operation and data collection and intermission (particle 

settling)

– Cemagref: 8 hours operation, 16 hours intermission [5]

– Niu, et. al.: 30 minutes operation, 6 hours intermission [6]

• Selected time for experiments: 30 minute operation, 30 

minutes intermission

• During intermission, the concentration of 180 µm was 

increased 
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Clogging Experimental Design & Data Collection: Trang Luu
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