Study of the effect of surface textures on
piston ring-liner lubrication using OpenFOAM

Jérome Sacherer
May 17, 2018

2.29 Numerical fluid mechanics final project



Introduction

* Cylinder liner : one of first
successful uses of surface
textures in lubrication (honing)
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Fig. 11. Results of the literature survey on theoretical models for textured and rough surfaces.

(“Hydrodynamic lubrication of textured surfaces: A review of modeling techniques and key findings”, Gropper et. al.)

e Eventual goals :

* To better understand dominant mechanisms around pore and
how they interact with the geometry

* To obtain correlations given different pore, ring and liner
parameters, to apply in larger model




Current ring-liner hydrodynamic model

* Deterministic model utilizing a
modified Reynolds equation :

Hydrodynamic pressure along rough liner surface
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* Limited to ring land only




Geometric setup

* Approximation of an effective land * Parameters to alter :
width (where oil film exists) * Ring and pore profile shape
* Neglects bore distortion, liner and * Pore depth and length
ring roughness, piston motion * Piston sliding speed

* Ring-liner clearance
 Assumes a set clearance
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CFD case setup details

* Major assumptions : * Time discretization :
 Laminar e Final time =35 ps
2D * Min Ax =0.05 um
* Incompressible e Max At = 2Xmin _ 0 0167 s
* No gravity v

* Adjustable time step, keeping C< 0.5

Newtonian

Cavitation ignored * Schemes used :

 Time : Euler (15t order implicit)
e Always Gaussian -> cell-centered
e Diffusion : 2" order central (linear)

 Advection : limiter scheme vanlLeer

* Surface tension : * Limits towards an upwind scheme for
e« 6=0.021 N/m rapidly changing gradient

* Constant contact angle of 45° at walls

* Solver : interDyMFoam

* Handles two fluids (oil and air) using a
volume ratio, a



Sliding mesh in OpenFOAM

* topoSet : creates sets of blocks and patches

 createBaffles : creates ACMI (arbitrarily coupled meshing interface) patches

Blockage patch
defined as wall §

* dynamicMesh :
defines the linear
motion of the mesh

* U, p_rgh, alpha.oil
BC’s :
 ACMI blockage
defined as a wall

 ACMI couple
defined as ACMI
cyclic



Animation of a curved ring

* Ring curvature allows
bubbles to perform,
which can later enter the
pore and displace oil

 Surface tension key in
dragging out oil

* Oil amassed at pore edge
tends to recede back into
pore—is this an issue ?
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Oil transport out of pore
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Effect of shallower pore
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* Smaller pore favors a
less symmetry in the
streamlines

* Keeps more oil out of
pore, but for how
long ?

Streamlines within the pore at the end of the ring :
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Further observations

Doubled sliding speed :
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Future work

e Test more variations in order to deduce correlations
e Goalis to incorporate pore effect in larger numerical model

 Test different pore shapes, though somewhat tricky in OpenFOAM

 How does the oil on the liner evolve later in time ?
» Effect of a second ring passing after the first

* Compare to numerical model of hydrodynamic lubrication to improve both

Questions ?



