Simulating Rayleigh-Taylor in a Hele-Shaw Cell

2.29 Final Presentation Samar Alqatari 05.17.18

Outline

- Rayleigh-Taylor and experimental setup
- Simulation: governing equations, numerical schemes
- Results
 - Instability dynamics
 - Refining mesh
 - Comparing schemes
 - Modeling physics
- Conclusions

Rayleigh-Taylor instability

David A. Siqueiros "accidental painting" technique

expansion of universe

RT in Hele-Shaw

Experimental setup: Hele-Shaw cell

 $30\mu m < b < 2500\mu m$

RT in Hele-Shaw

Rayleigh-Taylor instability from top view

Governing equations

Navier-Stokes

$$\nabla \cdot (\rho \vec{u}) = 0$$

$$\partial_t u + \nabla \cdot (\vec{v}v) - \nabla \cdot (\nu \nabla \vec{v}) = -\nabla p$$

Transport

$$\partial_t c + \vec{u} \cdot \nabla c = D\nabla^2 c$$

Schemes

- used interFoam solver
 - MULES method
- space descritization
 - convection term in momentum equation uses Gaussian quadrature integration with upwind interpolation.
 - the divergence in conservation of mass uses Van Leer
- time-marching
 - Euler, first-order implicit

Simulation

- OpenFOAM interFoam solver using volume of fluid method
- boundary conditions: three solid walls and "atmosphere" on one side
- initial conditions:

Results

RT instability dynamics

Changing grid shape

Changing grid resolution

Comparing schemes

- For time-marching, tried:
 - transient, first-order implicit Euler
 - transient, second-order implicit Euler
 - transient, second-order implicit Crank-Nicolson
 - pure (1)
 - off-centered (0.9 CN; 0.1 Euler)

Comparing schemes

- For time-marching, tried:
 - transient, first-order implicit Euler
 - transient, second-order implicit Euler
 - transient, second-order implicit Crank-Nicolson
 - pure (1)
 - off-centered (0.9 CN; 0.1 Euler)

Modeling the physics

Wavelength info

Wavelength info

Conclusions

- OpenFOAM is a powerful tool for fluids simulations and analysis, allowing a lot of user-modification and flexibility (albeit still requires some "coding")
- simulation depicts Rayleigh-Taylor dynamics in a confined geometry and effects of scale
- first-order backward Euler is most stable scheme
- Future work:
 - change boundary conditions and compare simulation results to experimental data