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Shape optimization

Background



Shape optimization

Goal: Adjust a shape as part of a PDE-constrained optimization

To improve aerodynamics: push red in, pull blue out

This is still a new field: applications in aeronautics began in the 1990s. [1]
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The adjoint method

Background



Adjoint method

This depicts the gradient of a cost function, specifically the drag coefficient.


The adjoint method efficiently computes gradients of cost functions, 

that is, the derivative of a single quantity with respect to many parameters. [3] [4] [5] [8]


This is the same procedure that is used to train neural networks, called backpropagation in that field.
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Adjoint method

Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.

Forward Pass [values] 

Backward Pass [derivatives]

[1] * [6][1] ^ [4]

[2.77] 2 [2][4] x [2] [2] 3 [3] [3] x [2]

[1] 1 [1]

[1] + [11]
This expression is x^2 + 3*x + 1
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Adjoint method

Forward Pass [values] 

Backward Pass [derivatives]

[1] * [6][1] ^ [4]

[2.77] 2 [2][4] x [2] [2] 3 [3] [3] x [2]

[1] 1 [1]
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Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.

We’ll compute the gradient at x=2
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Adjoint method
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Adjoint method
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Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.

Background



Adjoint method
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Adjoint method
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Adjoint method

Forward Pass [values] 

Backward Pass [derivatives]

[1] * [6][1] ^ [4] [1] 1 [1]

[2.77] 2 [2][4] x [2] [2] 3 [3] [3] x [2]

[1] + [11]

Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.
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Adjoint method

Forward Pass [values] 

Backward Pass [derivatives]

[1] + [11]

[1] * [6][1] ^ [4]

[2.77] 2 [2][4] x [2] [2] 3 [3] [3] x [2]

So at x=2, dy/dx = 4 + 3 = 7

[1] 1 [1]

Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.
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Adjoint method

Forward Pass [values] 

Backward Pass [derivatives]

[1] + [11]

[1] * [6][1] ^ [4]

[2.77] 2 [2][4] x [2] [2] 3 [3] [3] x [2]

[1] 1 [1]

Idea: Store the process involved in calculating y, then work backwards calculating the

derivative of each subexpression using the chain rule.

Notice that calculating the derivatives of ALL parameters took only 
approximately the same time as calculating the function itself!
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Code generation

Background



Code generation

Idea:  

Instead of coding your simulation directly, represent it in a domain-specific language.

Then formally transform your description into code.


Benefits: 
Can describe the simulation at a high level of abstraction

Can produce efficient, optimized C/FORTRAN code without ever having to read or write C/FORTRAN.

Can automatically generate adjoint code for computing gradients.
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Implementation



Implementation

Wrote a domain specific language and a code generation framework capable of generating forward and adjoint code.

(next slide)

program

objective function

initialize variables

Also supports defining and solving linear systems (not shown)



Forward pass

We keep track of state changes,

which is used in the backward pass

Backward Pass
initialize adjoint variables

revert state



Results

Wrote an environment for performing Galerkin FEM

which computes the resulting linear system symbolically

which is required for computing symbolic matrix derivatives used in the adjoint method. 

This is the first entry in the 91x91 matrix used to solve the Laplace equation



Results
Applied this framework to a shape optimization problem over the Laplace equation.

Dirichlet 1

Dirichlet 0

Neumann

Neumann Optimization goal: 
Maximize the value of this node

by adjusting this shape (Neumann)



Observations / next steps
Observations: 

1. Shape optimization leads to unstructured grids, so FEM is a good choice.

2. Variables shouldn’t map to values, they should map to nodes in a computational tree. There was added complexity in


the backward pass due to this imperative style. Treating variables in a functional style is much more natural here.


Next steps: 
1. Move to a sparse solver. There are solvers optimized for the large, sparse, but complicated matrices from FEM.

2. Solve a more interesting shape optimization problem (e.g. optimize drag coefficient in Stokes flow.)

3. Re-generate mesh after some time.

4. Add functionality to the language. Newton-Raphson is not supported, but it could be (with automatic Jacobians)

5. Generate optimized code in a fast language.



Thanks!

Questions?

Ian Hunter Pierre Lermusiaux Abhinav Gupta Steven Johnson Carlos Pérez-Arancibia
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