

Developing a pumping model for piston ring-groove oil/air transportation in IC engines

Wang Zhang May 16, 2018

Background

Motivation and requirement for "pumping" model

- Describe the oil/gas transportation
- ----acceptable accuracy

- Eventually working as a sub-model for 3D ring dynamics model
- ----simplicity and robustness

Pumping model assumption

Piston groove

h is the clearance (which is an input right now) ϕ is the volume ratio of the oil

Assumption:

- 2D fluid
- Qualified for Reynolds equation like simplification of NS equation

$$\frac{\partial P}{\partial x} - \mu \frac{\partial V_x}{\partial z^2} = 0$$

- Oil: incompressible
 Air: compressible(ρ ∝ P)
- Oil are attached on both side symmetrically the mid tunnel is for air
- Piston is static, ring only has velocity in z axle.
- Boundary conditions:

BC1: @y = 0,
$$V_x$$
 = 0 Non-slip wall
BC2: @z = $\frac{h}{2}$, $\frac{\partial V_x}{\partial z}$ = 0 Symmetry
BC3: @z = $\frac{\phi h}{2}$, $V_{xo} = V_{xa}$ Velocity continuity on interface
BC4: @z = $\frac{\phi h}{2}$, $\frac{\mu_0 \partial V_{xo}}{\partial z}$ = $\frac{\mu_a \partial V_{xa}}{\partial z}$ Shear stress continuity on interface

Mass conservation

Pumping model assumption

$$\frac{\partial(\phi h)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{24\mu_l} \phi^2 (3 - \phi) h^3 \frac{\partial P}{\partial x} \right]$$

Oil mass conservation

$$\frac{\partial [(1-\phi)hP]}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{12\mu_a} P(1-\phi)^3 h^3 \frac{\partial P}{\partial x} \right]$$

Air mass conservation

h is the clearance (which is an input right now)

 ϕ is the volume ratio of the oil

P is the local pressure

Choose normalization factors for equation

Oil mass conservation

$$\frac{\partial(\phi h)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{24\mu_l} \phi^2 (3 - \phi) h^3 \frac{\partial P}{\partial x} \right]$$

$$\frac{\partial (\phi h^*)}{\partial t^*} = \frac{h_{ref}^2 t_{ref} P_{ref}}{24\mu_l x_{ref}^2} \frac{\partial}{\partial x^*} [\phi^2 (3 - \phi) h^{*3} \frac{\partial P^*}{\partial x^*}]$$

Air mass conservation

$$\frac{\partial [(1-\phi)hP]}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{12\mu_a} P(1-\phi)^3 h^3 \frac{\partial P}{\partial x} \right]$$

$$\frac{\partial(\phi h^*)}{\partial t^*} = \frac{h_{ref}^2 t_{ref} P_{ref}}{24\mu_l x_{ref}^2} \frac{\partial}{\partial x^*} \left[\phi^2 (3 - \phi) h^{*3} \frac{\partial P^*}{\partial x^*}\right] \qquad \frac{\partial \left[(1 - \phi) h^* P^*\right]}{\partial t^*} = \frac{P_{ref} h_{ref}^2 t_{ref}}{12\mu_a x_{ref}^2} \frac{\partial}{\partial x^*} \left[P^* (1 - \phi)^3 h^{*3} \frac{\partial P^*}{\partial x^*}\right]$$

Ring

Order of 100µm

Piston groove

Order of 2~5mm, 20~40 grids

 $\mu_a \sim 3e - 5 Pa \cdot s$ $\mu_1 \sim 3e - 3 Pa \cdot s$ $dt \sim 2e - 5s$ (δ crankangle = 0.1, engine speed ~3000 rev/min)

Normalization factors:

$$x_{ref} = 1e - 4$$
 $h_{ref} = 1e - 4$
 $P_{ref} = 1e5$
 $t_{ref} = 1e - 6$

Jacobian matrix: Condition number 10~200 Determinant ~ 0.1~10

Choose FV method scheme

$$\frac{\partial(\phi h)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{24\mu_l} \phi^2 (3 - \phi) h^3 \frac{\partial P}{\partial x} \right]$$

$$\frac{\partial[(1-\phi)hP]}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{12\mu_a} P(1-\phi)^3 h^3 \frac{\partial P}{\partial x} \right]$$

Diffusion coefficient on cell boundary

Methods	Convergence		
Linear + explicit	Not convergent		
Linear + implicit	Not convergent		
Upwind(direction defined by Pressure)+explicit	Not convergent		
Upwind + implicit	Finally worked		
Upwind + Crank- Nicholson	Similar to implicit		
Upwind QUICK + implicit	Didn't try, for the Jacobian is too long		
Upwind QUICK + deferred correction	Convergent but oscillating		
Solve diffusion coefficient explicitly, then correct it by solving derivative terms implicitly	I thought it's a good idea, but not working		

Line search for Newton iteration

Model setup as a post-process

Preliminary results

Upwind

Upwind QUICK deferred

Inconsistency of BC due to low order treatment

Oil flow rate(mm²/s)

	Upwind		Upwind+deferred QUICK	
Boundary Conditions	ID (left boundary)	OD (right boundary)	ID	OD
P1=1Bar P2=1.5Bar	103.4052	103.4044	0.051062	-0.87704
P1=1Bar P2=2Bar	210.6707	210.668	0.044485	-1.0096
P1=1Bar P2=2.5Bar	318.0667	318.0621	0.065577	-0.97826

Flow rate $\propto \Delta P$

Unacceptable error
Due to boundary treatment

2D model

$$\frac{\partial(\phi h)}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{24\mu_l} \phi^2 (3 - \phi) h^3 \frac{\partial P}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{1}{24\mu_l} \phi^2 (3 - \phi) h^3 \frac{\partial P}{\partial y} \right]$$

$$\frac{\partial \left[(1 - \phi) h P \right]}{\partial t} = \frac{\partial}{\partial x} \left[\frac{1}{12\mu_a} P (1 - \phi)^3 h^3 \frac{\partial P}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{1}{12\mu_a} P (1 - \phi)^3 h^3 \frac{\partial P}{\partial y} \right]$$

Discussions for 2D model

CFL condition for implicit scheme

δ crank angle (°CA)	$\delta t(s)$	Maximum cells without divergence	$\delta x(m)$	$\frac{\delta t}{\delta x}$ (s/m)
0.1	1.6667e-05	11	4.5455e-04	27.24
0.05	8.3335e-06	16	3.1250e-04	37.50
0.01	1.6667e-06	29	1.7241e-04	103.44

Normalization factors

Thanks!