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1. Literature review
* |TM reactor
* |TM models
* An Intermediate-fidelity model
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ITM Reactor '

lon transport membrane (ITM) technology is a novel approach providing an alternative
solution to separate oxygen from air.
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Advantages:

1. Potentially achieve 100% CO, capture

2. Reducing 70% power consumption compared with conventional O, production methods
3. Increase power generation efficiency by 4%

[1]J. Hong, P. Kirchen, A.F. Ghoniem, Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane, Combust. Flame 160 (2013) 704—717.
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Purpose of different levels of ITM models:

1. Material-level analysis = Transport phenomena
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2. System-level analysis = Reactor Design and operating conditions
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[2] Nemitallah MA, Habib MA, Mezghani K. Experimental and numerical study of oxygen separation and oxy-combustion characteristics inside a button-cell LNO-ITM reactor. Energy 2015;84:600-11.

[3] Colombo K. E., Kharton, V. V., and Bolland, O., 2010, “Simulation of an Oxygen Membrane-Based Gas Turbine Power Plant: Dynamic Regimes With Operational and Material Constraints,” Energy Fuels, 24, pp. 590-608
[4] X. Tan, K. Li, A. Thursfield, I.S. Metcalfe, Oxyfuel combustion using a catalytic ceramic membrane reactor, Catalysis Today 131 (1-4) (2008) 292-304.
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Purpose of different levels of ITM models:

2. System-level analysis = Reactor Design and operating conditions
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Requirements of a good ITM models:

1) Capture important physical relationships
*  Conservation of mass and species
*  Thermodynamics
*  Oxygen permeation phenomena
*  Heat transfer
*  Chemical reactions

2) Without extreme computational time

*  Highly-coupled nonlinear system
*  Combustion process could be complicated
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An Intermediate-fidelity model B! |
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The model simplifies the monolith reactor into a 1-D problem due to symmetry

Split the geometry into discrete elements
Steady-state conservation equations are written for each discrete element

[5] Mancini ND, Mitsos A. lon transport membrane reactors for oxy-combustion - Part |: intermediate-fidelity modeling. Energy 2011;36:4701-20.
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Conservation equations [

Conservation of mass and species:
Nit1,0, = Mo, T OAii0, + DViR{ o,
n is the molar flow-rate of O, mol/s,
Ji,0, is the local oxygen flux [mol/m?]
R{,'(')Zis the local rate of production of oxygen due to chemical reaction [mol/m?3]

First law of thermodynamics:

Z Nip1,jhi (Tiy1) = z ngjhi(T;) — Qi + Hip, ext
J J
Q; represents the convective heat transfer between streams, where the overall heat
transfer coefficient U;
Qi = QUA(T; — T))
H; 0, ext represents the enthalpy stream transported from the feed to the permeate side

Second law of thermodynamics:

Spen = Y WFTP) = Y A5(T,P)

outlet inlet

[5] Mancini ND, Mitsos A. lon transport membrane reactors for oxy-combustion - Part |: intermediate-fidelity modeling. Energy 2011;36:4701-20.
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Transport equations

Heat and mass transfer consideration:

Gnielinski correlation is used for forced convection in turbulent pipe flow.
f./8 (Rep, ; — 1000)Pr
uDh,i =

fi pys _
1+12.7 |4 (Pr3—1)

Due to the small channel sizes of the reactor, the author assumes that the forced convection
dominates the heat transfer.

Oxygen permeation mechanisms:
. . . B n n
The semi-empirical form: Jo, = Aexp (— E) [(Péz) — (Pé’z) ]
A stands for pre-exponential factor; B represents the effective activation energy.

Things become complicated when we have reactive ITM:

Methane oxidation kinetics:

1) Fast kinetics assumption (products of chemical reaction is only CO, and H,0)
2) Thermodynamic equilibrium assumption (CH, CO, CO H, H,0 O,)

3) Additional oxidation kinetics scheme

Approach and solver:

Equation-oriented approach is used to solve the system of non-linear equations with
JACOBIAN, a general modeling and simulation program.

[5] Mancini ND, Mitsos A. lon transport membrane reactors for oxy-combustion - Part |: intermediate-fidelity modeling. Energy 2011;36:4701-20.
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[5] Mancini ND, Mitsos A. lon transport membrane reactors for oxy-combustion - Part |: intermediate-fidelity modeling. Energy 2011;36:4701-20.
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2. Modeling practice
A monolith reactor with LCF91 membrane

* FLUENT simulation for permeation channel
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A co-current monolith reactor
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Simplifications made:
1. Assume temperature constant in the channel
2. Pressure drop neglected 4\ MathWorks
3. Fast kinetics assumptions . Cantera
. Chemical Kinetics  Thermodynamics » Transport Processes

Equations satisfied:
1. Conservation of mass and species
2. First and second laws of thermodynamics
3. Resistance-network oxygen permeation mechanism



. . 1'1 MITMECHE
Base case simulation parameters
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Operation Temperature [°C] 700-9000 Length (cm)
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CFD analysis for sweep side channel
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Solver ANASYS Fluent
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Simulation Results
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Conclusion and Discussion

Review:

* |ITM technology is a novel approach to separate oxygen from air, which could provide
solutions to CCS.

* |ITM reactor modeling varies depending on the geometry, materials, flow configuration
and whether the model enables reactions.

* ITM reactor is a highly-coupled nonlinear system and an intermediate-fidelity model is
introduced.

Modeling practice:

* A monolith reactor was developed enables the oxygen permeation phenomena and fast
kinetics reaction

* The simulation shows that the oxygen permeation rate does not decrease much along the
reactor

* The 2D sweep channel was simulated for the oxy-combustion process

* The simulated temperature shows the effect of the combustion may not be neglected



Further Improvement

* Monolith reactor:
1. Enables the temperature variable by adding energy equation
2. Optimize the reactor size

* CFD modeling
1. Try different solvers and kinetics databases
2. Revise the definition of boundary conditions

Thanks!
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Resistance-network mechanism
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