
Finite Element Solver
for the 2D Steady,
Laminar Navier-
Stokes Equations

Faisal As'ad

2.29 Project

Motivation

Combined interest in:

Finite element
methods
External �uid �ows
Unstructured grids

Goal

To create from scratch a
2D �nite element
Navier-Stokes solver for
incompressible, laminar,
steady �ows.

MATLAB

SU2 (Stanford University Unstructred)

External �ow over a cylinder (Re<~100)

Programming platform:

Meshing Software:

Test Case:

Governing Equations

 Navier-Stokes conservation of mass, x-momentum, y-
momentum:

+ ∇ ⋅ (ρu) = 0
∂ρ

∂t

+ ∇ ⋅ [ρu ⊗ u] + ∇p − ∇ ⋅ = 0
∂(ρu)

∂t
τ̄̄̄
¯ ¯̄̄

Incompressible �ow divide out

Steady

Assume Newtonian Fluid

Now we have:

→ ρ

→ = 0
∂()

∂t

→ ∇ ⋅ = μ uτ̄̄̄
¯¯̄

∇2

∇ ⋅ u = 0

∇ ⋅ [u ⊗ u] + ∇p − ν u = 0
1

ρ
∇2

After non-dimensionalizing with , ,

, �nally:

Three equations, three unknowns: , ,

=Vref V∞ = DLref

=pref
μV∞

D

∇ ⋅ u = 0
Re(∇ ⋅ [u ⊗ u]) + ∇p − u = 0∇2

u(x, y) v(x, y) p(x, y)

Weak Form of Governing Equations

: scalar perturbation (test function) to the solutions on
the interior s.t. .

Multiply both sides of equations by & integrate over
domain:

ϕ(x, y)
ϕ = 0|δΩ

ϕ

(∇ ⋅ u)ϕ dΩ = 0∫
Ω

(Re(∇ ⋅ [u ⊗ u]) + ∇p − u)ϕ dΩ = 0∫
Ω

∇2

Applying vector integration by parts, with at
boundaries, weak form is:

ϕ = 0

(∇ ⋅ u)ϕ dΩ = 0∫
Ω

(Re(∇ ⋅ [u ⊗ u]) + ∇p)ϕ − ∇u ⋅ ∇ϕ dΩ = 0∫
Ω

Now assume:

We choose a linear piecewise
continuous nodal basis function, s.t.

 @ node and =0 at all
other nodes.

u(x, y) = (x, y)∑N
i=1 uiψi

v(x, y) = (x, y)∑N
i=1 vi ψi

p(x, y) = (x, y)∑N
i=1 pi ψi

(x, y) = 1ψi i

Galerkin Method

Try each of the basis functions as test functions in
the weak form
Gives equations for the unknown , ,
coe�cients.
Simpli�es integrals since each basis function only
non-zero over adjacet elements.

N

3N 3N ui vi pi

Chosen basis functions
are linear, so weak
form is simple to
di�erentiate and
integrate in local
coordinates , over
adjacent elements.

ξ η

 , = 1 − ξ − ηψ̄1 = ξψ̄2 = ηψ̄3

Then transform the integrals and derivatives to global coordinates ,

using Jacobians of elements

x y

=Jelem
∂(ξ,η)

∂(x,y)

Mesh

Unstructured triangular mesh
(26,192 elements & 13,336 nodes)
Re�ned near the cylinder (large
gradients in BL, spacing= @ wall)
Coarse away from cylinder to reduce
of unknowns
Outer domain away from from
cylinder surface

Mesh imported into MATLAB using node
coordinates and connectivity information.

D

200

15D

Boundary Conditions

On the wall (cylinder):

Dirichlet BC on velocity: ,
Neumann BC on pressure:

= 0uwall = 0vwall

= 0
∂p

∂n
|wall

On left half outer domain:

Freestream Dirichlet BC on velocity:

,
Neumann BC on pressure:

=uL V∞ = 0vL

= 0
∂p

∂n
|
L

On right half outer domain:

Dirichlet BC on pressure (zero guage pressure):

Neumann BC on velocities: ,

Outer domain BCs not immediately obvious, only physically
approximate, but domain is far from cylinder so in�uence is
minimal.

= 0pR

= 0∂u

∂n
|R

= 0∂v

∂n
|R

FE treatment of BCs

Neumann BCs are 'Natural Boundary Conditions'
(zero gradient BCs automatically satis�ed)

Result of dropping term in integration by
parts

Dirichlet BCs are 'Essential Boundary Conditions':
they must be speci�ed explicitly

Equation replaces the respective governing
equation at the boundary node

Solution Method

 equations to solve, of the form:

 (Conservation of mass + BCs)

 (Conservation of x-momentum + BCs)

 (Conservation of y-momentum + BCs)

Compactly : with

3N

(, ,) = 0Rmi
uj vj pj p

(, ,) = 0Rxi
uj vj pj u

(, ,) = 0Ryi
uj vj pj v

R(x) = 0 x ≡ { , , }uj vj pj

Non-linear in the , , coe�cients, and so must be solved
using an iterative method.

Newton method chosen for fast convergence, but requires
additional e�ort to code the Jacobian matrix.

Where each block is of size x .

uj vj pj

J = =
∂R

∂x

⎡

⎣

⎢⎢⎢⎢⎢

∂Rx

∂u

∂Ry

∂u

∂Rm

∂u

∂Rx

∂v

∂Ry

∂v

∂Ry

∂v

∂Rx

∂p

∂Ry

∂p

∂Ry

∂p

⎤

⎦

⎥⎥⎥⎥⎥

N N

Each residual only depends on adjacent elements, so the
Jacobian is sparse:

Then, at each iteration : .
Iteration stops when:

 or

In MATLAB, more e�cient to store the Jacobian Matrix
values, row indicies, column indicies in lists, and then form
sparse matrix from lists.

On average each iteration took ~15 seconds.

Solutions converged to machine precision with <10 iterations
(quicker convergence at low Re due to smaller gradients)

k = − ()R()x
k+1

x
k

J
−1

x
k

x
k

||Δx|| < tol k = kmax

Regimes of flow over a
cylinder

Creeping flow (Re<6.5):

Advective intertial forces small
compared to viscous forces (no
seperation/recirculaton region).

Laminar Separation Region
(Re <~100)

Advective intertial forces
dominate, separation is evident
downsteam of the cylinder.

Results

As expected, catastrophic failure of the solver!

(does not converge at all, residual explodes)

Comparison of recirculation zone length with experimental
data

Pressure Oscillations

Use of continuous linear elements for both velocity and
pressure basis functions leads to pressure oscillations (proved
by Logg and Mardal). This velocity pro�le is still well-
captured because:

Average gradients are still captured accurately
because of �ne mesh
At low Re, pressure force dominated by viscous forces

Solution: Quadratic elements in velocity, linear elements in
pressure (but increases complexity).

Future Improvements

Quadaratic velocity basis functions to eliminate
pressur oscillations
Implement unsteadiness by adding the time dervative
term
Add turbulence model (, SA) by adding Reynolds
stress term in RANS equations
Validation of values with experimental data

These changes will allow going to higher Reynolds
numbers and make the code more robust.

k − ϵ

CD

