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Introduction

* Modeling of high frequency acoustic propagation is
prevalent in numerous applications (ex: underwater
ocean acoustics). °

* Traditionally accomplished using a method known as
ray tracing (a Lagrangian approach).
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* In this work, we look to investigate an alternate s - ng
Eulerian approach to tackle this problem through the
Level Set Method.



The Acoustic Wave Equation

Define the following variables:

po = Equilibrium Density po = Equilibrium Pressure v = Particle Velocity
p = Instantaneous Density p = Instantaneous Pressure
pPa = p — po = Acoustic Density Pa = p — po = Acoustic Pressure

Now consider the propagation of acoustic waves:

Continuity Equation Euler’s Equation Equation of State
dp v 1 (31?) 1 2<52p)
— L pV = — : = - =potpa|l =) +zp| =] + .-
5 +V-pv=0 T (v-V)v pr P=Potral 5, 5 ACrE S
5 v l 9 Assumption : Acoustic Pressure
Pa ov 1 . p dD itv Small
+V- =0 Ty vp, = pa—pa(_) and Density Sma

Acoustic Wave
v Equation




The High Frequency Solution

* We consider now solving for the evolution of acoustic waves at high
frequencies.

e Assume a solution of the following form:

p(x,t) = SN N " Ay (x, 1) (iw)
k=0
* S(x,t)is the phase function. At any given point of time, the
level surfaces of S(x, t) correspond to points at which the phase
is the same (surfaces of constant phase).

* We refer to these surfaces of constant phase as the
wavefront as well.

* Substitution into the wave equation, (and retaining the highest

order terms in w) we obtain: Hamilton-Jacobi Equation
General Form
S(x,t) +c|VS(x,t)| =0 < du(x, t)

H _
5 + H(x,Vu) =0

* This has the form a Hamilton-Jacobi Equation.



Approaches to Evolve the Wavefront

Lagrangian Approach

Considers a discrete set of particles on the initial
wavefront:

* Trajectory of each point governed by
characteristics of the Hamiltonian system:

d
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dp 1

dt —@Vmc(x)

Difficulty: Points originally close together may
diverge at later times (poor wavefront resolution)

Eulerian Approach

Consider the front to be the level surface of an
implicit function (¢) in a higher dimension:
e Evolve the implicit function by solving a PDE
governing the implicit functions evolution (the
Hamilton-Jacobi equations).

Difficulty: The Level Set method has issues when
wavefronts become multivalued.
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Level Set Methods with Codimension-Two Objects

* Traditional Level Set Methods use codimension-one
objects:

Example: If we are interested in solving for the
evolution of an interface in R?, evolve the
surface as the zero isocontour of an implicit
function in R3.

* Codimension-two objects in Level Set Methods:

Example: Points in R?, Curves in R3.
Represent the object in the level set framework
as the intersection of the isocontours of two
functions ¢4 and ¢,.
* Evolve each level set function as in the
standard approach.
 Treatment may be needed to evolve the
level sets while keeping them as orthogonal
as possible.
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Level Set Formulation in a Reduced Phase Space

We look to evolve the acoustic wavefront as a curve/strip in a higher
dimensional reduced phase space with coordinates (x, y, 8).
* 0 gives the normal direction of a given point on the wavefront
(measured from the +x axis).
* The wavefront is then found by projecting this curve onto the (x, y) 04
plane. 02+

The velocity field for the strip’s propagation can be derived to be:

c(x) - cos(0) . : / “
e(x)-sin(0) . I

V(x,6) = (x) - sin(
Oc(x) (0 Oc(x) 0 1T = —
oz sin(l) — =5, - cos(0) T T

The strip is represented as the intersection of two level set functions
whose evolution is governed by:

O¢
8—;+V($7y70).v¢1:0 -— ¢1:¢1(x7y797t)
%_FV(x,y,Q).vQﬁQ:O ¢2 = ¢2(,y,0,1)

The wavefront (surfaces of constant phase) is given as:

W(ﬂ?,y,t) — {(ﬂf,y) ‘ gb1($,y,8,t) — ¢2(x7y7(97t) — O}



Implementation

0
LV (w,0.0) V61 =0
0
(;Zf + V(z,y,0) - Vo =0

Discretize explicitly in time. In this . . : -
~ Discretize in space using upwinding

work, have used TVD Runge-Kutta . L
for all spatial derivatives.
Schemes.
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* Boundary Conditions:
* Absorbing BCs implemented by imposing a zero-Neumann condition on the boundary.
* Reflecting BCs implemented by imposing a Dirichlet BC given by:

¢1 (33, Y, 9?"€fl7 t) — gbl (LU, Y, Qinca t)
¢2 (il?, Y, 0?"6fl7 t) — ¢2 (I, Y, einca t)
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Case 1: Constant Wave Speed (Open Domain)

Wave Speed: Constant value of 1

Spatial Discretization: N, = N, = N, = 40

Temporal Discretization: ¢t € [0.0,6.0], At =1 x 1072

Time Stepping Scheme: Forward Euler

Spatial Derivatives Scheme: First Order Upwind Approximation
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Case 2: Variable Wave Speed (Open Domain)

Wave Speed Distribution

Wave Speed: Variable Distribution
Spatial Discretization: N, = N,, = N, = 50

Temporal Discretization: ¢t € [0.0,3.2], At =1 % 1072

Time Stepping Scheme: Second order TVD RK

Spatial Derivatives Scheme: Second Order Upwind Approximation
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Case 3: Constant Wave Speed (Reflecting Boundary)

Wave Speed: Constant value of 2.5

Spatial Discretization: N, = N,, = N, = 50

Temporal Discretization: t € [0.0,5.2], At =1 10?2

Time Stepping Scheme: Third order TVD RK

Spatial Derivatives Scheme: Fifth Order Upwind Approximation
(using WENO scheme)
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Case 4: Variable Wave Speed (Reflecting Boundary)

Wave Speed Distribution

Wave Speed: Variable Distribution

Spatial Discretization: N, = N,, = N, = 50

Temporal Discretization: ¢t € [0.0,5.2], At =1 % 1072

Time Stepping Scheme: Third order TVD RK

Spatial Derivatives Scheme: Fifth Order Upwind Approximation
(using WENO scheme)
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Conclusion

* Level set methods provide an effective approach to propagate wavefronts in an
Eulerian framework relative to standard ray tracing methods.
 However, increased computational costs occurred as we are solving in a higher
dimensional reduced phase space.
* For 2D propagation, need to evolve level set implicit functions in R>
* For 3D propagation, need to evolve level set implicit functions in R>

e Future Work:
* Improve computational cost by incorporating the narrow band level set

method.
* |nvestigate the incorporation of schemes to compute the amplitude.
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