

Differences between a straight river estuary and a meandering estuary

- hydrodynamics and salinity dynamics

Tong Bo

05/15/2019

Research background

- Estuary is where a river meets the ocean; river water is mixed with seawater.
- Influenced by both river discharge and tides.
- Meandering river estuaries show different hydrodynamics, salinity dynamics and sediment transport behaviors from straight river estuaries.
- Inspired by recent observations from the North River.

A map of North River, from Google Earth.

Model setup

- domain: ~ 80 km by 14 km, meanders: x = 45 55 km
- ocean shelf, depth 7 m -100 m; tidal inlet, width 600 m; lagoon, width 2000 m; river, width 200 m, depth 3 m 7 m.
- The Regional Ocean Modeling System (ROMS), 3D finite volume solver

Bathymetry map of the two models

- river cross-sectional profile: parabolic profile
- geometry shape of the meandering river: $\theta = 0.9 \frac{\pi}{2} A \sin^2(s) \cos(s), x = \int \cos \theta \, ds; y = \int \sin \theta \, ds$

Bathymetry map of the meandering region

Non-uniform rectangular grids

- gridsize: $dy = 10 \text{ m to } \sim 1 \text{ km}$; $dx = 20 \text{ m to } \sim 1 \text{ km}$.
- larger gradient in the estuarine region, smaller grid size $\tau_{\Delta x} \approx C \frac{\partial^{p+1} S}{\partial \xi^{p+1}} (\Delta x)^p$
- masks added to the land

Non-uniform rectangular grids used in the model

Modeling results

- modeling a 20-days time period, dominated by semi-diurnal tides
- semi-diurnal tides set on ocean boundaries and river discharge on the upstream boundary
- a partially mixed estuary

numerical simulation results: straight river and meandering river estuary models

Compare different advection schemes in ROMS

- C2C2: second order centered scheme for momentum and tracers
- U3C4: combination of third order upstream scheme (QUICK scheme) and forth order centered scheme for momentum and tracers
- More fluctuations in C2C2 scheme undershoots and overshoots of tracers, especially in the presence of strong gradients

Compare different advection schemes in ROMS

compare depth averaged velocity and surface salinity along the river centerline

large fluctuations in C2C2 scheme

generally the non-uniform grid is distributed reasonably; we may need to refine the grid at x = 55 km

Hydrodynamics

- cross-sectional circulation
 - barotropic: normal secondary circulation, water level gradient
 - baroclinic: density driven circulation
- stronger cross-sectional circulation in the meandering river

Hydrodynamics

- drag coefficient
 - along river momentum balance, depth averaged

$$\frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} = -g \frac{\partial \eta}{\partial x} - \frac{1}{2} \beta g \frac{\partial \overline{S}}{\partial x} H - C_D \frac{\overline{u} |\overline{u}|}{H}$$

• drag coefficient computed at a large scale (using same formula as observations)

NT

0

Ρ

ROGR

A M

• consistent with observations, 0.008 - 0.020 v.s. 0.003, by Wouter Kranenburg

Hydrodynamics

- drag coefficient
 - larger drag coefficient in the meandering river, especially at the river bends

drag coefficient computed by numerical results

why meandering river has larger drag coefficient?

- $\frac{\partial u}{\partial y} = 0$ horizontal velocity profile
- flow separation

Salinity dynamics

- stratification
 - meandering river is less stratified
 - related to stronger cross-sectional circulation

less stratified more stratified psu30 2 2 25 0 0 20 [H] 2 -2 [H] ~-2 15 10 -4 -4 -6 └─ 45.5 -6 45.75 45.8 45.55 45.6 45.65 45.7 45.85 45.9 45.95 46 45.55 45.6 45.65 45.7 45.75 45.8 45.85 45.9 45.95 46 45.5 $x \, [\mathrm{km}]$ $x \, [\mathrm{km}]$

Stratification

summary

model setup

• non-uniform grids

numerical scheme comparison

hydrodynamics

- stronger cross-sectional circulation in a meandering river estuary
- larger drag coefficient in a meandering river
 - consistent with observations
 - flow separation

salinity dynamics

- weaker stratification in the meandering river estuary
 - related to cross-sectional circulation
- tidal dispersion

Acknowledgement

David Ralston (advisor)

Rocky Geyer, Wouter Kranenburg, Adrian Mikhail P. Garcia

Thank you!

Supplementary slides

tidal dispersion

at the first bend

