Panel Methods for Unsteady Flow over an Elastic Membrane

JAMES GABBARD
MAY 15TH, 2019

Motivation: Biological Propulsion

- Most animals that fly or swim use thin, flexible structures that deform in a non-negligible way
- Meshing a deforming computational domain is expensive
- Meshing a deforming surface is much easier (Animals undergo nearly-isometric deformation)
- For propulsion, surface forces are often the goal, flow fields are secondary

Panel Methods and Potential Flow

Pros:

- Reduces the dimension of the problem (faster computations)
- Reduced number of computational elements require less memory
- Designed for complex geometries
- Naturally handle open BC's and unbounded exterior flows

Cons:

- Only appropriate for attached high Reynold's number flows
- Limited Physics (no viscous effects or turbulence)
- Interactions are nonlocal: dense matrices, cost grows as $O(N^2)$ without special treatment
- Higher order methods require complex surface integrals or specialized quadrature algorithms

Two Fundamental Singularities

Singular Source

Singular Doublet

The Green's Function for the Laplace Operator is a function satisfying

$$\nabla^2 G = \delta(r)$$

• For potential flow, this Green's function is a source: a singular point that radiates fluid equally in all directions. In 3D,

$$\phi_S = G(r) = \frac{1}{4\pi |r|}$$

• The directional derivative of a source flow gives a doublet flow, with potential given by

$$\phi_D = \hat{n} \cdot \nabla G(r) = \frac{\hat{n} \cdot r}{4\pi |r|^3}$$

• This acts like a jet, accelerating fluid to infinite velocity at a single point

Green's Identity and Layer Potentials

• Functions satisfying $\nabla^2 \phi = 0$ also satisfy Green's Identity,

$$\phi(r) = -\int_{S} \frac{\partial \phi}{\partial n} G(r-s) ds + \int_{S} \phi n \cdot \nabla G(r-s) ds$$
 Sources (Single Layer) Doublets (Double Layer)

- All of the information needed to construct ϕ exists on the boundary
- Every such ϕ can be built up from sources and doublets on the boundary

Green's Identity and Layer Potentials

• Functions satisfying $\nabla^2 \phi = 0$ also satisfy Green's Identity,

$$\phi(r) = -\int_{S} \frac{\partial \phi}{\partial n} G(r-s) ds + \int_{S} \phi n \cdot \nabla G(r-s) ds$$
Sources
(Single Layer)

Doublets
(Double Layer)

- All of the information needed to construct ϕ exists on the boundary
- Every such ϕ can be built up from sources and doublets on the boundary

Instead of solving for ϕ , why not solve for two boundary functions?

What do Layer Potentials do?

When singularities are spread out over a surface, they lead to nonsmooth potentials. For a uniform distribution on the unit circle,

Constant Source Strength

Jump in Normal Derivative

Constant Doublet Strength

Jump in Potential

$$\phi(x) = \int_{S} G(x - s) ds$$

$$\phi(x) = \int_{S} G(x - s)ds$$
 $\phi(x) = \int_{S} n \cdot \nabla G(x - s)ds$

Panel Methods

- For thin panels, normal velocity is zero on both sides. No jump in normal velocity means no source distribution.
- The potential flow solution will be a double layer potential
- The goal is to find a function $\mu(s)$ on the surface so that

$$\phi(r) = \int_{S} \mu(s) \frac{\partial}{\partial n} G(r - s) ds$$

$$\frac{\partial \phi}{\partial n} + U_S \cdot n = 0 \text{ on } S$$

• In practice, assume that $\mu(s) = \sum \mu_i \phi_i(s)$, integrate over each individual panel, and solve a linear system to find values of μ_i

Boundary Panels

Collocation Points

Doublet / Vortex Equivalence

- High order basis functions lead to difficult surface integrals, which can be expensive to evaluate (analytically or through quadrature).
- For the special case of constant-strength doublet panels, these integrals reduce to line integrals around the boundary:

A doublet panel of constant strength μ is equivalent to a vortex ring with circulation $\Gamma = \mu$.

 An array of doublet panels can be replaced with a grid of singular vortices. Methods that take advantage of this are collectively known as Vortex Lattice Methods.

Forces acting on Each Panel

- In compressible flow, surfaces do not experience shear force.
- Pressure forces can be recovered from the momentum equation

$$p + \frac{1}{2}\rho v^2 + \rho \frac{\partial \phi}{\partial t} = const.$$

 After some juggling of material derivatives and limiting processes, pressure differences can be written in terms of dipole strength For a vortex lattice, v is continuous across the surface except at the singular vortex lines. The $\rho v^2/2$ term becomes

$$F_{\Gamma} = \rho \Gamma(\vec{v} \times \vec{e})$$

The time-dependent term relates to added-mass effects, and can be calculated from changes in doublet strength:

$$F_t = \rho \frac{d\mu}{dt} A_{panel}$$

Wake Modeling

- Wake dynamics are an important part of real flows. To treat
 wakes in a potential flow model, a vortex sheet is created at
 the trailing edges of thin bodies.
- Vortex sheet is used to satisfy the Kutta condition (flow leaves the trailing edge smoothly). For Vortex Lattice, this means

$$\Gamma_{TE}=0$$

Once it enters the flow, vorticity satisfies

$$\frac{D\omega}{Dt} = 0$$

• It can be tracked using Lagrangian particles or panels.

Explicit Kutta Condition

- 1. Solve
- 2. Advect
- 3. Connect
- 4. Assign Strength

Steady Results: Finite Wings

Wingtip Vortices and Wake Advection

Wake Advection with Forward Euler

Wake Advection with Low Storage RK3

Flapping Foils

Flapping Foils

Qualitatively correct Lift/Thrust Patterns

Qualitatively correct wake dynamics

Weakly Coupled FSI

Thank You! Questions?

