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Motivation: Biological Propulsion

• Most animals that fly or swim use thin, flexible 
structures that deform in a non-negligible way

• Meshing a deforming computational domain is 
expensive

• Meshing a deforming surface is much easier 
(Animals undergo nearly-isometric deformation)

• For propulsion, surface forces are often the goal, 
flow fields are secondary
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Panel Methods and Potential Flow

Cons:

• Only appropriate for attached high Reynold’s 
number flows

• Limited Physics (no viscous effects or turbulence)

• Interactions are nonlocal: dense matrices, cost 
grows as 𝑂 𝑁2 without special treatment

• Higher order methods require complex surface 
integrals or specialized quadrature algorithms

Pros:

• Reduces the dimension of the 
problem (faster computations)

• Reduced number of computational 
elements require less memory

• Designed for complex geometries

• Naturally handle open BC’s and 
unbounded exterior flows



Two Fundamental Singularities

Singular Source

Singular Doublet

• The Green’s Function for the Laplace Operator is a function satisfying

∇2𝐺 = 𝛿(𝑟)

• For potential flow, this Green’s function is a source: a singular point that 
radiates fluid equally in all directions. In 3D, 

𝜙𝑆 = 𝐺 𝑟 =
1

4𝜋 𝑟

• The directional derivative of a source flow gives a doublet flow, with 
potential given by 

𝜙𝐷 = ො𝑛 ⋅ ∇𝐺 𝑟 =
ො𝑛 ⋅ 𝑟

4𝜋 𝑟 3

• This acts like a jet, accelerating fluid to infinite velocity at a single point



Green’s Identity and Layer Potentials

• Functions satisfying ∇2𝜙 = 0 also satisfy Green’s Identity,

• All of the information needed to construct 𝜙 exists on the boundary

• Every such 𝜙 can be built up from sources and doublets on the boundary

Sources
(Single Layer)

Doublets
(Double Layer)
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Instead of solving for 𝝓, why not solve for two boundary functions?



What do Layer Potentials do?

Constant Doublet Strength
=

Jump in Potential

Constant Source Strength
=

Jump in Normal Derivative

When singularities are spread out 
over a surface, they lead to non-
smooth potentials. For a uniform 
distribution on the unit circle,



Collocation Points

Panel Methods

Boundary Panels

• For thin panels, normal velocity is zero on both sides. No 
jump in normal velocity means no source distribution.

• The potential flow solution will be a double layer potential

• The goal is to find a function 𝜇(𝑠) on the surface so that

𝜙 𝑟 = න
𝑆

𝜇 𝑠
𝜕

𝜕𝑛
𝐺 𝑟 − 𝑠 𝑑𝑠

𝜕𝜙

𝜕𝑛
+ 𝑈𝑠 ⋅ 𝑛 = 0 on 𝑆

• In practice, assume that 𝜇(𝑠) = ∑𝜇𝑖𝜙𝑖(𝑠), integrate over 
each individual panel, and solve a linear system to find 
values of 𝜇𝑖



Doublet / Vortex Equivalence

• High order basis functions lead to difficult surface integrals, which 
can be expensive to evaluate (analytically or through quadrature).

• For the special case of constant-strength doublet panels, these 
integrals reduce to line integrals around the boundary:

A doublet panel of constant strength 𝝁 is equivalent 
to a vortex ring with circulation 𝚪 = 𝝁.

• An array of doublet panels can be replaced with a grid of singular 
vortices. Methods that take advantage of this are collectively 
known as Vortex Lattice Methods.

𝜇

Γ



Forces acting on Each Panel

• In compressible flow, surfaces do not 
experience shear force.

• Pressure forces can be recovered from the 
momentum equation

𝑝 +
1

2
𝜌𝑣2 + 𝜌

𝜕𝜙

𝜕𝑡
= 𝑐𝑜𝑛𝑠𝑡.

• After some juggling of material derivatives 
and limiting processes, pressure differences 
can be written in terms of dipole strength

The time-dependent term relates to 
added-mass effects, and can be calculated 
from changes in doublet strength:

𝐹𝑡 = 𝜌
𝑑𝜇

𝑑𝑡
𝐴𝑝𝑎𝑛𝑒𝑙

For a vortex lattice, 𝑣 is continuous across 
the surface except at the singular vortex 
lines. The 𝜌𝑣2/2 term becomes

𝐹Γ = 𝜌Γ( Ԧ𝑣 × Ԧ𝑒)



Wake Modeling

• Wake dynamics are an important part of real flows. To treat 
wakes in a potential flow model, a vortex sheet is created at 
the trailing edges of thin bodies.

• Vortex sheet is used to satisfy the Kutta condition (flow leaves 
the trailing edge smoothly). For Vortex Lattice, this means

Γ𝑇𝐸 = 0

• Once it enters the flow, vorticity satisfies

𝐷𝜔

𝐷𝑡
= 0

• It can be tracked using Lagrangian particles or panels.
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Explicit Kutta Condition

𝐷𝜔

𝐷𝑡
= 0

Γ𝑇𝐸 = 0

1. Solve

2. Advect

3. Connect

4. Assign Strength



Steady Results: Finite Wings

Wingtip Vortices

Converging Upper 
StreamlinesDiverging Lower 

Streamlines



Wingtip Vortices and Wake Advection

Wake Advection with 
Forward Euler

Wake Advection with 
Low Storage RK3



Flapping Foils



Flapping Foils

Qualitatively correct 
Lift/Thrust Patterns

Qualitatively correct 
wake dynamics 
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Weakly Coupled FSI



Thank You! Questions?


