

Characterization of Unsteady Boundary Layer Response to Free-Stream Variations

Kanika Gakhar 2.29 Final Project

Motivation: Effect of Combustor Turbulence on Boundary Layer Dissipation for High-Pressure Turbine Blades

Project Objectives

- Model Free Stream Turbulence (FST) as a periodic time and space varying freestream velocity
 - Define variables to isolate and model effect of various
 FST parameters on BL response
- Characterize unsteady response of laminar boundary layer over a semi-infinite flat plate

Project Scope & Overview

Boundary Layers: Brief Background

- Most aerodynamic flows have high Reynolds numbers
- Solution of Navier Stokes equations exhibits boundary layers at solid-surface boundaries \rightarrow magnitude of V(r) rapidly drops from the bulk-flow velocity down to V = 0 at the surface
- ➢ Origin of boundary layer behavior → highest-derivative term $\nabla^2 V$ being multiplied by small viscosity coefficient, v

Image Credits: Mark Drela, Aerodynamics of Viscous Fluids

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho u \frac{\partial u}{\partial x} = \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}\right)$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho u \frac{\partial u}{\partial x} = \frac{\partial p}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2}\right)$$
$$\begin{bmatrix} \frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x} \end{bmatrix}$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \implies \rho u = \frac{\partial \psi}{\partial y}, \qquad \rho v = -\frac{\partial \psi}{\partial x}$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \implies \rho u = \frac{\partial \psi}{\partial y}, \qquad \rho v = -\frac{\partial \psi}{\partial x}$$

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \implies \rho u = \frac{\partial \psi}{\partial y}, \qquad \rho v = -\frac{\partial \psi}{\partial x}$$
$$\frac{\partial}{\partial t} \left(\frac{\partial \psi}{\partial y}\right) + \frac{\partial \psi}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

 ∂

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \implies \rho u = \frac{\partial \psi}{\partial y}, \qquad \rho v = -\frac{\partial \psi}{\partial x}$$
$$\frac{\partial}{\partial t} \left(\frac{\partial \psi}{\partial y}\right) + \frac{\partial \psi}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial \tau}{\partial y}$$

Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

$$\frac{\partial(\rho u)}{\partial t} + \rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho u_e \frac{\partial u_e}{\partial x}\right] + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right)$$

Step 2: Write u and v in terms of stream-function, ψ , to impose continuity

$$\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0 \implies \rho u = \frac{\partial \psi}{\partial y}, \qquad \rho v = -\frac{\partial \psi}{\partial x}$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \psi}{\partial y} \right) + \frac{\partial \psi}{\partial y} \frac{\partial u}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial u}{\partial y} = \left[\frac{\rho_e \partial u_e}{\partial t} + \rho_e u_e \frac{\partial u_e}{\partial x} \right] + \frac{\partial \tau}{\partial y}$$

BC at edge: $u = u_e$ BC on solid body: $u = 0, \psi = 0$

Local Scaling Transformation: Independent Variable Transformation

Non-dimensionalize x w.r.t. arbitrary plate length, L and y w.r.t. boundary layer thickness scale,

$$-\frac{1}{\delta}\frac{\partial\psi}{\partial\eta}\frac{\partial\delta}{\partial t} + \frac{\partial}{\partial t}\left(\frac{\partial\psi}{\partial\eta}\right) + \frac{1}{L}\frac{\partial\psi}{\partial\eta}\frac{\partial u}{\partial\xi} - \frac{1}{L}\frac{\partial\psi}{\partial\xi}\frac{\partial u}{\partial\eta}$$
$$= \frac{\rho_e u_e \delta}{L}\frac{\partial u_e}{\partial\xi} + \rho_e \delta\frac{\partial u_e}{\partial t} + \frac{\partial\tau}{\partial\eta}$$

Image Credits: Mark Drela, Aerodynamics of Viscous Fluids

Local Scaling Transformation: Dependent Variable Transformation

Non-dimensionalize u w.r.t. edge velocity, u_e ; ψ w.r.t. mass-flow scale, m; τ w.r.t. edge dynamic pressure :

Image Credits: Mark Drela, Aerodynamics of Viscous Fluids

Local Scaling Transformation Equations

Three non-linear, first-order PDEs: ∂F

- $\succ \ U = \frac{\partial F}{\partial \eta}$
- $\succ S = \frac{\nu \xi L}{u_e \delta^2} \frac{\partial U}{\partial \eta}$

$$\begin{split} & \succ \ \xi \left[\frac{L}{u_e} \left(\frac{\partial U}{\partial t} + \frac{U - 1}{u_e} \frac{\partial u_e}{\partial t} \right) + \frac{\partial F}{\partial \eta} \frac{\partial u}{\partial \xi} - \frac{\partial F}{\partial \xi} \frac{\partial U}{\partial \eta} \right] \\ & = \beta_m F \frac{\partial U}{\partial \eta} + \beta_u \left(1 - U \frac{\partial F}{\partial \eta} \right) + \frac{\partial S}{\partial \eta} \end{split}$$

Three BCs:

BC at edge:
$$U(\eta = 1) = 2$$

BC at body:
$$U(\eta = 0) = 0$$

 $F(\eta = 0) = 0$

Discretized Equations: Finite-Difference Scheme

Three non-linear, first-order PDEs:

$$\succ U = \frac{\partial F}{\partial \eta}$$

$$\succ S = \frac{\nu \xi L}{u_e \delta^2} \frac{\partial U}{\partial \eta}$$

$$\begin{split} & \succcurlyeq \ \xi \left[\frac{L}{u_e} \left(\frac{\partial U}{\partial t} + \frac{U - 1}{u_e} \frac{\partial u_e}{\partial t} \right) + \frac{\partial F}{\partial \eta} \frac{\partial u}{\partial \xi} - \frac{\partial F}{\partial \xi} \frac{\partial U}{\partial \eta} \right] \\ & = \beta_m F \frac{\partial U}{\partial \eta} + \beta_u \left(1 - U \frac{\partial F}{\partial \eta} \right) + \frac{\partial S}{\partial \eta} \end{split}$$

- t: Fully implicit, 1st order Backward Euler
- η : 1st order Forward FD, Trapezoidal Integral
- ξ : 1st order Backward FD, Trapezoidal Integral

Three non-linear residual equations:

$$R_{F_j} = F_{i,j+1}^k - F_{i,j}^k - \frac{1}{2} \left(U_{i,j+1}^k + U_{i,j}^k \right) \Delta \eta_j = 0$$

$$R_{U_j} = U_{i,j+1}^k - U_{i,j}^k - \frac{u_{e_i}^k \left(\delta_i^k\right)^2}{\nu \xi_{iL}} \frac{1}{2} \left(S_{i,j+1}^k + S_{i,j}^k\right) \Delta \eta_j = 0$$

$$R_{S_{j}} = S_{i,j+1}^{k} - S_{i,j}^{k} + \beta_{m_{i}}^{k} \frac{1}{2} (F_{i,j+1}^{k} + F_{i,j}^{k}) (U_{i,j+1}^{k} - U_{i,j}^{k}) + \beta_{u_{i}}^{k} \left[\Delta \eta_{j} - \frac{1}{2} (F_{i,j+1}^{k} - F_{i,j}^{k}) (U_{i,j+1}^{k} + U_{i,j}^{k}) \right] + \frac{\xi_{i}}{\Delta \xi} (\frac{1}{2} (F_{i,j+1}^{k} - F_{i,j+1}^{k}) - F_{i-1,j}^{k}) (U_{i,j+1}^{k} - U_{i,j}^{k}) - \frac{1}{2} (U_{i,j+1}^{k} - U_{i-1,j+1}^{k}) + U_{i,j}^{k} - U_{i-1,j}^{k}) (F_{i,j+1}^{k} - F_{i,j}^{k}) - \frac{L\xi_{i}\Delta \eta_{j}}{(u_{e_{i}}^{k})^{2}\Delta t} \left[\frac{u_{e_{i}}^{k}}{2} (U_{i,j+1}^{k} - U_{i,j+1}^{k-1} + U_{i,j+1}^{k}) + \frac{1}{2} (U_{i,j+1}^{k} - U_{i,j+1}^{k}) + \frac{1}{2} (U_{i,j+1}^{k} + U_{i,j}^{k}) - 1 \right] (u_{e_{i}}^{k} - u_{e_{i}}^{k}) \right] = 0$$

Discretized Equations: Finite-Difference Scheme

Discretized Equations: Finite-Difference Scheme

- t: Fully implicit, 1st order Backward Euler •
- η : 1st order Forward FD, Trapezoidal Integral
- ξ : 1st order Backward FD, Trapezoidal Integral •

Three non-linear residual equations:

$$R_{F_{j}} = F_{i,j+1}^{k} - F_{i,j}^{k} - \frac{1}{2} \left(U_{i,j+1}^{k} + U_{i,j}^{k} \right) \Delta \eta_{j} = 0$$

$$R_{U_{j}} = U_{i,j+1}^{k} - U_{i,j}^{k} - \frac{u_{e_{i}}^{k} \left(\delta_{i}^{k} \right)^{2}}{v \xi_{iL}} \frac{1}{2} \left(S_{i,j+1}^{k} + S_{i,j}^{k} \right) \Delta \eta_{j} = 0$$

$$R_{S_{j}} = S_{i,j+1}^{k} - S_{i,j}^{k} + \beta_{m_{i}}^{k} \frac{1}{2} \left(F_{i,j+1}^{k} + F_{i,j}^{k} \right) \left(U_{i,j+1}^{k} - U_{i,j}^{k} \right)$$

$$+ \beta_{u_{i}}^{k} \left[\Delta \eta_{j} - \frac{1}{2} \left(F_{i,j+1}^{k} - F_{i,j}^{k} \right) \left(U_{i,j+1}^{k} + U_{i,j}^{k} \right) \right] + \frac{\xi_{i}}{\Delta \xi} \left(\frac{1}{2} \left(F_{i,j+1}^{k} - F_{i,j}^{k} \right) \left(U_{i,j+1}^{k} - U_{i,j}^{k} \right) \right)$$

$$+ U_{i,j}^{k} - U_{i-1,j}^{k} \right) \left(F_{i,j+1}^{k} - F_{i,j}^{k} \right) \left(U_{i,j+1}^{k} - U_{i,j}^{k} \right) - \frac{1}{2} \left(U_{i,j+1}^{k} - U_{i,j+1}^{k} + U_{i,j}^{k} \right) \right)$$

$$U_{i,j}^{k} - U_{i-1,j}^{k-1} \right) \left(F_{i,j+1}^{k} - F_{i,j}^{k} \right) - \frac{L\xi_{i}\Delta\eta_{j}}{\left(u_{e_{i}}^{k} \right)^{2} \Delta t} \left[\frac{u_{e_{i}}^{k}}{2} \left(U_{i,j+1}^{k} - U_{i,j+1}^{k-1} + U_{i,j+1}^{k} \right) \right]$$

 $E^{k} = \frac{1}{(11^{k} + 11^{k})} = 0$

Solving Non-Linear Residual Equations: Newton Iteration with Underrelaxation

$\frac{\partial R_{\mathrm{BC}_1}}{\partial F_1}$					δF_1		R_{BC_1}
$\frac{\partial R_{\mathrm{BC}_2}}{\partial U_1}$					δU_1		$R_{ m BC_2}$
19. 19. 19.	··. ··. ··.			:	δS_1		:
··. ··.	··. ··.				δF_j		:
19. A.	··. ··.				δU_j		÷
	$\frac{\partial R_{S_j}}{\partial F_j} \ \frac{\partial R_{S_j}}{\partial U_j} \ \frac{\partial R_{S_j}}{\partial S_j}$	$\frac{\partial R_{S_j}}{\partial F_{j+1}} \frac{\partial R_{S_j}}{\partial U_{j+1}} \frac{\partial R_{S_j}}{\partial S_{j+1}}$		$\frac{\partial R_{S_j}}{\partial \beta_u}$	δS_j		R_{S_j}
	$\frac{\partial R_{F_j}}{\partial F_i} \frac{\partial R_{F_j}}{\partial U_j}$	$\frac{\partial R_{F_{j}}}{\partial F_{j+1}} \frac{\partial R_{F_{j}}}{\partial U_{j+1}}$			δF_{j+1}	= -	R_{F_j}
	$\frac{\partial R_{U_j}}{\partial U_j} \frac{\partial R_{U_j}}{\partial S_j}$	$\frac{\partial R_{U_j}}{\partial U_{i+1}} \frac{\partial R_{U_j}}{\partial S_{i+1}}$			δU_{j+1}		R_{U_j}
	, ,	··· ··· ··.	19. 19. 19.	:	δS_{j+1}		:
		··. ··.	14. 14.		δF_N		:
		· ·	· ·		δU_N		÷
			$\frac{\partial R_{BC_3}}{\partial U_N}$		δS_N		$R_{ m BC_3}$
	$\frac{\partial R_{\beta}}{\partial F_{i}} \frac{\partial R_{\beta}}{\partial U_{i}} \frac{\partial R_{\beta}}{\partial S_{i}}$	$\frac{\partial R_{\beta}}{\partial F_{i+1}} \frac{\partial R_{\beta}}{\partial U_{i+1}} \frac{\partial R_{\beta}}{\partial S_{i+1}}$	· · · · · · · · · · · · · · · · · · ·	$\frac{\partial R_{\beta}}{\partial \beta_{u}}$	$\delta \beta_u$		R_{eta}

- Sparse, banded matrix → can reduce operation count from O[N³] to O[N] by using special sparse-matrix methods, such as banded or block-tridiagonal solvers that exploit zeros
- Underrelaxation \rightarrow prevent possible divergence: $\omega \le 1$

 $F_{j}^{n+1} = F_{j}^{n} + \omega \,\delta F_{j}$ $U_{j}^{n+1} = U_{j}^{n} + \omega \,\delta F_{j}$ $S_{j}^{n+1} = S_{j}^{n} + \omega \,\delta F_{j}$ $\beta_{uj}^{n+1} = \beta_{uj}^{n} + \omega \,\delta F_{j}$

• Convergence $\rightarrow \max_{j} (|\delta F_j|, |\delta U_j|, |\delta S_j|) < \epsilon$

Results: Validation for Steady Case

Test case#1:

- 2D steady, laminar, flat-plate boundary layer
 - Favorable pressure gradient: $C_p = \left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)$

•
$$Re_L = 10^6$$

•

Results: Validation for Steady Case with Spatial Variations

Test case#1:

- 2D steady, laminar, flat-plate boundary layer
 - Favorable pressure gradient: $C_p = \left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)$

•
$$Re_L = 10^6$$

• Added variations in free-stream velocity with amplitude, A = 0.05, such that:

$$\frac{u_e}{u_0} = \sqrt{1 - C_p} + A * \sin\left(2\pi \left(\frac{x}{L}\right) \left(\frac{L}{\lambda}\right)\right)$$

Results: Validation for Steady Case with Spatial Variations

Test case#1:

Compared solutions obtained from:

- 1. Finite-difference Boundary Layer Code
- 2. Integral Boundary Layer Method using Drela's closure relations
- 3. Schlichting's Analytical solution
 - C_d as a function of Re_{θ} and Pohlausen pressure gradient parameter, λ
- Solutions for Finite-Difference & Integral Boundary Layer Codes in Agreement with Analytical Soln.

Test case#2:

- 2D unsteady, laminar, flat-plate boundary layer
- Uniform pressure distribution with no spatial variation
- $Re_L = 10^6$
- Oscillating inlet conditions, such that:

$$\frac{u}{u_0}\Big|_{inlet} = 1 + A * \cos(\omega t)$$

Results: Validation for Unsteady Case with Spatial Variations

Test case#3:

- 2D unsteady, laminar, flat-plate boundary layer
- $Re_L = 10^6$
- Traveling wave conditions, such that:

$$\frac{u_e}{u_0} = 1 + A * \cos(\omega t - kx)$$

2.29: NUMERICAL FLUID MECHANICS FINAL PROJECT

Conclusion: Explaining Discrepancies & Potential Issues

- Finite-difference code doesn't have an interactive boundary-layer component → if pressure gradient is not favorable, detects numerical flow separation and doesn't produce physical results → code needs more work
- Rate of unsteady response of BL to fluctuating BCs does not match up between finitedifference and finite volume → comparative analysis needs further investigation
- Velocity profiles from two codes agree for certain time stamps and disagree for others → analytical & numerical assessment needs further work to understand discrepancies
- BCs imposed in two different codes don't always physically represent the same BCs → test cases need more exploration for BCs

Conclusion: Advantages of Finite-Difference Method

Integral Boundary Layer Methods	2.29 Finite Volume Code	Thin-Shear Layer Finite Difference Method
Relies on closure relations & curve fit functions → results not valid for large free-stream variations & fully unsteady response	Makes no assumptions and doesn't rely on closure relations (laminar) → results valid for any range of space- and time- variations in free- stream velocity	Only makes thin-shear layer assumption → results valid for any range of space- and time- variations in free-stream velocity
Requires only one grid point in y- direction \rightarrow solves for integrated BL characteristics	Requires grid for entire domain → solves for entire domain	Scales grid based on BL thickness → only solves for flow inside BL Flow separation issues if interacting BL algorithm not implemented
Uses integrated values + closure relations → computational cost & time extremely low	Uses uniform grid → computational cost increases as mesh needs to be refined near wall	Uses scale transformed grid → computational cost & time significantly lower
-	CFL condition triggered → need extremely small time step to match small mesh size	Fully-implicit scheme → stable even for large time steps

Conclusion: Future Work

- Debug issues and assess finite difference results as compared to finite volume results
- Introduce vertical disturbances that are more characteristic of free-stream turbulence

- Translate analysis to turbulent boundary layers
- Translate analysis to high-pressure turbine blade geometry
- Incorporate combustor turbulence data from LES models as input condition for unsteady BL code

Thank You!

Prof. Lermusiaux and Wael for all the help with my project and for answering my incessant questions

kgakhar@mit.edu MIT AeroAstro Gas Turbine Lab