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Motivation: Effect of Combustor Turbulence on Boundary 
Layer Dissipation for High-Pressure Turbine Blades
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Project Objectives

• Model Free Stream 

Turbulence (FST) as 

a periodic time and 

space varying free-

stream velocity
 Define variables to 

isolate and model 

effect of various 

FST parameters on 

BL response

• Characterize 

unsteady response 

of laminar 

boundary layer 

over a semi-infinite 

flat plate

Laminar 

BL

Flat Plate

Rate of Convection

Amplitude

Wavenumber & Frequency
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Project Scope & Overview

Navier-Stokes ⇒ Thin Shear Layer Eqns.

Finite-Difference Discretization Scheme 

+ Newton Iteration Solver

Steady Free-

Stream  

Variations

Unsteady 

Free-Stream  

Variations

Integral Boundary 

Layer Method 

(closure relations)

Analytical solution

2.29 Finite-Volume 

Code

Quantify effect of free-stream variations 

on laminar boundary layer dissipation
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Boundary Layers: Brief Background

 Most aerodynamic flows have high Reynolds numbers 

 Solution of Navier Stokes equations exhibits boundary layers at solid-surface boundaries 

magnitude of 𝑉(𝑟) rapidly drops from the bulk-flow velocity down to 𝑉 = 0 at the surface 

 Origin of boundary layer behavior  highest-derivative term 𝛻2𝑉 being multiplied by small 

viscosity coefficient, 𝜈

Image Credits: Mark Drela, Aerodynamics of Viscous Fluids



2.29: NUMERICAL FLUID MECHANICS

FINAL PROJECT
6

Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
=
𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑥2
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
=
𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑥2

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0 ⇒ 𝜌𝑢 =

𝜕𝜓

𝜕𝑦
, 𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

⇒ 𝜌𝑢 =
𝜕𝜓

𝜕𝑦
, 𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0

𝜕

𝜕𝑡

𝜕𝜓

𝜕𝑦
+
𝜕𝜓

𝜕𝑦

𝜕𝑢

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

⇒ 𝜌𝑢 =
𝜕𝜓

𝜕𝑦
, 𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0

𝜕

𝜕𝑡

𝜕𝜓

𝜕𝑦
+
𝜕𝜓

𝜕𝑦

𝜕𝑢

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕𝜏

𝜕𝑦

⇒ 𝜌𝑢 =
𝜕𝜓

𝜕𝑦
, 𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
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Thin-Shear Layer Equation

 Step 1: Write pressure term in terms of inviscid boundary-layer edge velocity

𝜕 𝜌𝑢

𝜕𝑡
+ 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
𝜇
𝜕𝑢

𝜕𝑦

 Step 2: Write 𝑢 and 𝑣 in terms of stream-function, 𝜓, to impose continuity

𝜕 𝜌𝑢

𝜕𝑥
+
𝜕 𝜌𝑣

𝜕𝑦
= 0

𝜕

𝜕𝑡

𝜕𝜓

𝜕𝑦
+
𝜕𝜓

𝜕𝑦

𝜕𝑢

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑢

𝜕𝑦
=

𝜌𝑒𝜕𝑢𝑒
𝜕𝑡

+ 𝜌𝑒𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕𝜏

𝜕𝑦

BC at edge: 𝑢 = 𝑢𝑒
BC on solid body: 𝑢 = 0, 𝜓 = 0

⇒ 𝜌𝑢 =
𝜕𝜓

𝜕𝑦
, 𝜌𝑣 = −

𝜕𝜓

𝜕𝑥
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Local Scaling Transformation: Independent Variable 
Transformation

Non-dimensionalize 𝑥 w.r.t. arbitrary plate length, 𝐿
and 𝑦 w.r.t. boundary layer thickness scale, 

𝛿 𝑥, 𝑡 =
𝜈𝑥

𝑢𝑒 𝑥,𝑡
∶

𝜉 =
𝑥

𝐿
𝜂 =

𝑦

𝛿 𝑥, 𝑡

−
1

𝛿

𝜕𝜓

𝜕𝜂

𝜕𝛿

𝜕𝑡
+

𝜕

𝜕𝑡

𝜕𝜓

𝜕𝜂
+
1

𝐿

𝜕𝜓

𝜕𝜂

𝜕𝑢

𝜕𝜉
−
1

𝐿

𝜕𝜓

𝜕𝜉

𝜕𝑢

𝜕𝜂

=
𝜌𝑒𝑢𝑒𝛿

𝐿

𝜕𝑢𝑒
𝜕𝜉

+ 𝜌𝑒𝛿
𝜕𝑢𝑒
𝜕𝑡

+
𝜕𝜏

𝜕𝜂 Image Credits: Mark Drela, Aerodynamics of Viscous Fluids
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Local Scaling Transformation: Dependent Variable 
Transformation

Non-dimensionalize 𝑢 w.r.t. edge velocity, 𝑢𝑒; 𝜓
w.r.t. mass-flow scale, 𝑚; 𝜏 w.r.t. edge dynamic 

pressure ∶

𝐹 =
𝜓

𝑚
𝑈 =

𝑢

𝑢𝑒
𝑆 =

𝜏

𝜌𝑢𝑒
2

𝜉𝐿

𝛿

𝑚 = 𝜌𝑒𝑢𝑒𝛿

𝜉
𝐿

𝑢𝑒

𝜕𝑈

𝜕𝑡
+
𝑈 − 1

𝑢𝑒

𝜕𝑢𝑒
𝜕𝑡

+
𝜕𝐹

𝜕𝜂

𝜕𝑢

𝜕𝜉
−
𝜕𝐹

𝜕𝜉

𝜕𝑈

𝜕𝜂

= 𝛽𝑚𝐹
𝜕𝑈

𝜕𝜂
+ 𝛽𝑢 1 − 𝑈

𝜕𝐹

𝜕𝜂
+
𝜕𝑆

𝜕𝜂
Image Credits: Mark Drela, Aerodynamics of Viscous Fluids

𝛽𝑢 =
𝜉

𝑢𝑒

𝑑𝑢𝑒
𝑑𝜉

𝛽𝑚=
𝑑𝑙𝑛 𝑚

𝑑𝑙𝑛 𝜉
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Local Scaling Transformation Equations

Three BCs:

BC at edge: 𝑈(𝜂 = 1) = 1

BC at body:   𝑈(𝜂 = 0) = 0

𝐹(𝜂 = 0) = 0
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Discretized Equations: Finite-Difference Scheme

• t: Fully implicit, 1st order Backward Euler

• 𝜂: 1st order Forward FD, Trapezoidal Integral

• 𝜉: 1st order Backward FD, Trapezoidal Integral
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Discretized Equations: Finite-Difference Scheme

• t: Fully implicit, 1st order Backward Euler

• 𝜂: 1st order Forward FD, Trapezoidal Integral

• 𝜉: 1st order Backward FD, Trapezoidal Integral
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Discretized Equations: Finite-Difference Scheme

space 

march

• t: Fully implicit, 1st order Backward Euler

• 𝜂: 1st order Forward FD, Trapezoidal Integral

• 𝜉: 1st order Backward FD, Trapezoidal Integral

time 

march
𝒕
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Solving Non-Linear Residual Equations: Newton Iteration 
with Underrelaxation

• Sparse, banded matrix  can reduce 

operation count from 𝑂[𝑁3] to 𝑂[𝑁] by using 

special sparse-matrix methods, such as 

banded or block-tridiagonal solvers that 

exploit zeros

• Underrelaxation  prevent possible 

divergence: 𝜔 ≤ 1

𝐹𝑗
𝑛+1 = 𝐹𝑗

𝑛 + 𝜔 𝛿𝐹𝑗
𝑈𝑗
𝑛+1 = 𝑈𝑗

𝑛 + 𝜔 𝛿𝐹𝑗
𝑆𝑗
𝑛+1 = 𝑆𝑗

𝑛 +𝜔 𝛿𝐹𝑗

𝛽𝑢𝑗
𝑛+1 = 𝛽𝑢𝑗

𝑛 + 𝜔 𝛿𝐹𝑗

• Convergence  max
𝑗

𝛿𝐹𝑗 , 𝛿𝑈𝑗 , 𝛿𝑆𝑗 < 𝜖
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Results: Validation for Steady Case

Test case#1:

• 2D steady, laminar, flat-plate boundary 

layer

• Favorable pressure gradient:        

𝐶𝑝 =
𝑥

𝐿

2

− 2
𝑥

𝐿
• 𝑅𝑒𝐿 = 106
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Results: Validation for Steady Case with Spatial Variations

Test case#1:

• 2D steady, laminar, flat-plate boundary 

layer

• Favorable pressure gradient:        

𝐶𝑝 =
𝑥

𝐿

2

− 2
𝑥

𝐿
• 𝑅𝑒𝐿 = 106

• Added variations in free-stream velocity 

with amplitude, 𝐴 = 0.05, such that:

𝑢𝑒
𝑢0

= 1 − 𝐶𝑝 + 𝐴 ∗ sin 2𝜋
𝑥

𝐿

𝐿

𝜆
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Results: Validation for Steady Case with Spatial Variations

Test case#1:

Compared solutions obtained from:

1. Finite-difference Boundary Layer 

Code

2. Integral Boundary Layer Method 

using Drela’s closure relations

3. Schlichting’s Analytical solution 

o 𝐶𝑑 as a function of 𝑅𝑒𝜃 and 

Pohlausen pressure gradient 

parameter, 𝜆

• Solutions for Finite-Difference & Integral 

Boundary Layer Codes in Agreement with 

Analytical Soln. 
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Results: Validation for Uniform Unsteady Case

Test case#2:

• 2D unsteady, laminar, flat-plate boundary layer

• Uniform pressure distribution with no spatial variation

• 𝑅𝑒𝐿 = 106

• Oscillating inlet conditions, such that:
𝑢

𝑢0
ቚ
𝑖𝑛𝑙𝑒𝑡

= 1 + 𝐴 ∗ cos 𝜔𝑡
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Results: Validation for Uniform Unsteady Case
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Results: Validation for Uniform Unsteady Case
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Results: Validation for Unsteady Case with Spatial 
Variations

Test case#3:

• 2D unsteady, laminar, flat-plate boundary layer

• 𝑅𝑒𝐿 = 106

• Traveling wave conditions, such that:
𝑢𝑒
𝑢0

= 1 + 𝐴 ∗ cos 𝜔𝑡 − 𝑘𝑥
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Results: Validation for Unsteady Case with Spatial 
Variations – Finite Difference
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Results: Validation for Unsteady Case with Spatial 
Variations – Finite Volume 
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Conclusion: Explaining Discrepancies & Potential Issues

• Finite-difference code doesn’t have an interactive boundary-layer component  if pressure 

gradient is not favorable, detects numerical flow separation and doesn’t produce physical 

results  code needs more work

• Rate of unsteady response of BL to fluctuating BCs does not match up between finite-

difference and finite volume  comparative analysis needs further investigation

• Velocity profiles from two codes agree for certain time stamps and disagree for others 

analytical & numerical assessment needs further work to understand discrepancies

• BCs imposed in two different codes don’t always physically represent the same BCs  test

cases need more exploration for BCs
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Conclusion: Advantages of Finite-Difference Method

Integral Boundary Layer 

Methods 

2.29 Finite Volume Code Thin-Shear Layer Finite 

Difference Method

Relies on closure relations & curve 

fit functions  results not valid for 

large free-stream variations & fully 

unsteady response

Makes no assumptions and doesn’t 

rely on closure relations (laminar) 

results valid for any range of 

space- and time- variations in free-

stream velocity

Only makes thin-shear layer 

assumption  results valid for any 

range of space- and time- variations 

in free-stream velocity

Requires only one grid point in y-

direction  solves for integrated BL 

characteristics

Requires grid for entire domain 

solves for entire domain

Scales grid based on BL thickness 

 only solves for flow inside BL

Flow separation issues if 

interacting BL algorithm not 

implemented

Uses integrated values + closure

relations  computational cost & 

time extremely low

Uses uniform grid  computational

cost increases as mesh needs to be 

refined near wall

Uses scale transformed grid 

computational cost & time 

significantly lower

- CFL condition triggered  need 

extremely small time step to match 

small mesh size

Fully-implicit scheme  stable even 

for large time steps
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Conclusion: Future Work

• Debug issues and assess finite difference results as compared to finite volume results

• Introduce vertical disturbances that are more characteristic of free-stream turbulence

• Translate analysis to turbulent boundary layers

• Translate analysis to high-pressure turbine blade geometry

• Incorporate combustor turbulence data from LES models as input condition for 

unsteady BL code

Laminar BL

No-Slip Wall

Rankine Vortex
Slip Wall

Strength
Spatial Distribution

Rate of Convection
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Questions?
kgakhar@mit.edu

MIT AeroAstro Gas Turbine Lab


