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The Majda-MacLaughlin-Tabak
equation models 1D dispersive
waves with intermittent focusing
events.

i
∂u

∂t
=
( ∂
∂x

) 1
2 u + λ|u|2u + iDu

(1) Figure: Sample intermittent event.

want to simulate MMT to look at non-Gaussian statistics

want to simulate efficiently because extreme events are rare
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We have a perfectly good spectral solver, via Riesz derivative∣̂∣ ∂
∂x

∣∣ 1
2 u = −|k |

1
2 û is diagonal

iDu is diagonal in Fourier space

|u|2u is local is real space, requiring only n log n operations
(Fast Fourier transform)

But what if we insisted on using finite difference methods anyway?
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First step: define a fractional derivative.

Riemann-Liouville fractional derivative

∂αu

∂xα
(x) =

1

Γ(n − α)

∂n

∂xn

∫ x

a
u(ξ)(x − ξ)n−α−1dξ (2)

looks like an integral, which is bad news in terms of locality

dependence on the fiducial point a, for the limits of integration

not even the only sensible definition–see Caputo fractional
derivative
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Second step: make it finite difference.

Grünwald-Letnikov formula

∂αu

∂xα
(x) = lim

∆x→0

1

∆xα
Σ

x−a
∆x
k=0(−1)k

(
α

k

)
u(x − k∆x) (3)

This looks like a finite difference stencil!

need to evaluate real binomial coefficients (which helpfully
decay quickly)

still (formally) need a fiducial point a

no symmetry

(
α

k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
(4)
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Figure: Plot of the Grünwald-Letnikov derivative of order α for the
function f (x) = sin x . At α = 1, it agrees with f ′(x) = cos(x).
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The Grünwald-Letnikov formula
by itself has stability issues

shifted formula:

Dα
x ,pu =

∂αu

∂xα
(x + p∆x) (5)

We’ll use a particular linear
combination called rot-3

Figure: Sparsity pattern for gl-rot-3,
n = 1024, α = 0.5.
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i
∂u

∂t
=
( ∂
∂x

) 1
2 u + λ|u|2u + iDu (6)

(
∂
∂x

) 1
2 u term: handled

nonlinear term |u|2u: “straightforward”

the selective Laplacian iDu is unimportant

How to handle the time integration?
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The spectral code uses a Cox Exponential integrator called
ETD4RK

in Fourier space,
(
∂
∂x

) 1
2 u and iDu are both linear and

diagonal

linear terms are solved via matrix exponential, nonlinear terms
via explicit Runge Kutta

I tried

Forward Euler

Linearized Backward Euler

ETD4RK
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The matrix exponential in spectral ETD4RK does an impeccable
job of conserving energy.

Unfortunately...

The finite difference fractional derivative does not.
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Figure: Spectral solution.
Figure: Finite difference solution,
linearized backward Euler.
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I tried a few methods to ‘correct’ for the growth and collect usable
statistics anyway, but none worked out well.

Problem seems to be that FD methods don’t handle the ‘phase
rotation’ very conservatively.

Constructing the FD matrix exponentials for ETD4RK is literally
melting my computer, because it requires accurate approximations
to Z−1(exp(Z )− 1).

Adaptive methods (Runge Kutta, etc) refine the time step into
oblivion.
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