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Stokes flow and Stokeslets

• Stokes flow 


•  


• Applications:  motion of microorganisms, bubbles, MEMS devices etc.


• Two important properties: linearity and time-independence


• Stokeslet: the fundamental solution due to a Dirac-delta type point force. In 3D


• Consider a regularized force                           a regularized Stokeslet                                                                         


•    : a cutoff function, which has a finite radius of support


•   : a parameter which controls the spreading of a regularized force


• Main idea:  for a given force distribution, velocity field can be found via linear superposition of regularized 
Stokeslets


Re = UL /ν ≪ 1 μ∇2u − ∇p + F = 0
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2D application I: flow past a cylinder

• Set-up: A cylinder translating at speed u = 1, v = 0

• N equally spaced discretization points 

•  Step 1: Find the forces from the velocity BC : 


• Solve the matrix equation 


•  Note that matrix M (2N x 2N)  is singular. Two ways to get a unique solution

• additional constraint: total normal force add to zero

• Or use GMRES with zero initial guess


• Step 2: find the velocity field elsewhere via superposition


• Compare with analytic solution  (Stokes paradox)
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Choose the 2D cutoff function:

Force distribution (N=100)

u(xi) =
N

∑
j=1

Mij(x1, . . . , xN))fj

Velocity contours (solid line: exact 
solution; dashed line: numerical solution)

Velocity u along x-axis



2D application II: a self-propelled cylinder pair

• Set-up:
• Two identical cylinders with a fixed separation rotating about their axes
• Self-propelled: 

• 3 additional scalar equations : 
• 3 additional unknowns:  overall translational velocity U and V and angular 

velocity Ω
• Find the forces on the cylinder through the velocity BC using

• Then find the velocity elsewhere 
• Special case: counter-rotating at equal angular velocity


• Analytic solution exists: Jeffery’s solution
• Expect 
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ΣFx = 0 ΣFy = 0 Στ = 0

V = a2ω/w

udef = Lf − U − Ω × x

Forces on each cylinder (w = 3a) Velocity contours N= 200 (w = 8a) Error in V vs N for w = 8a



2D application II: a self-propelled cylinder pair

“Purcell’s strokes” (one cycle)   
Counter-rotating

“Tilted ellipse”“Tilted square”

• Visualize the trajectory for arbitrary paths in the angle phase space

• Next step: optimize the efficiency of closed phase trajectories for a given input energy 



Method of Regularized Stokeslets in 3D: the original method

• Similar to 2D, starting from the boundary integral equation, 


•  Cortez et al (2005) derived that:


• for N Stokeslets located along the surface of the solid body D, the fluid velocity can 
be approximate with


• Where       is the regularized Green’s function (regularized Stokeslet)


• Here, we use the 3D cutoff function 


fn
wn

Sϵ

ϕϵ(x) =
15ϵ4

8π( | |x | |2 + ϵ2)7/2

u(x0) =
1

8πμ ∫S
f(x) ⋅ Sϵ(x0, x)dS

the Stokeslet strength, force per unit area or length

u(x0) =
1

8πμ

N

∑
n=1

wnfn ⋅ Sϵ(x0, xn) (1)

the quadrature weight of the nth particle 



• The original approach:


• Discretize the surface of a unit sphere using a six-patch structured grid.


• Projecting the 6 faces of cube onto the surface of the sphere


• Each face of the cube is discretized with an N x N uniform grid.


• evaluate the integral using trapezoidal rule.


• Results:


3D problem: flow past a sphere 

u(x0) =
1

8πμ

N

∑
n=1

wnfn ⋅ Sϵ(x0, xn) (1)

(Smith 2009)

Error curves



A boundary element regularized Stokeslet method

• Smith (2009): the original approach is equivalent to a constant-force boundary element method where low-order 
quadrature in which the abscissae are identified with the collocation points.


• Observation: The kernel      varies rapidly close to 


• Thus, we decouple the force and the integration of the kernel.


• Note:


• The choice of constant-force element is purely for simplicity: higher order methods maybe used


• The integral maybe evaluated using any appropriate methods.  E.g. Gauss-Legendre quadrature (12 x 12 
points for ‘near-singular’ cases ; 4 x 4 points otherwise)


•

u(x0) =
1

8πμ

N

∑
n=1

wnfn ⋅ Sϵ(x0, xn) (1)

u(x0) =
1

8πμ

N

∑
n=1

fn ⋅ ∫Sn

Sϵ(x0, x)dS (2)

Sϵ xn

Error curves



Comparison of the two approaches

• Limiting factor: matrix setup and storage cost: 


• e.g. halving the element width       16 times # matrix elements


• A method that gives accurate results with a relatively coarse mesh is beneficial.


• The boundary element approach is better — achieves high accuracy with fewer DoFs


→

(Smith 2009)



Summary

• We have reviewed and implemented the method of regularized Stokeslets in 2D and 3D for a few 
cases.


• We can also use triangular meshes and solve for flows for other shapes or geometries.


• Next step:


•  we can extend the current approach using non-constant force elements, where the forces are 
approximated by a set of basis functions.


• We will investigate other 3D swimming problems in Stokes flow, e.g. a self-propelled cylinder 
pair, necklace-shaped swimmer etc.

Triangular mesh for the sphere Stokes flow past a Stanford bunny



References

• Smith, D. J. 2009 A boundary element regularized Stokeslet method applied to cilia- 
and flagella-driven flow. Proc. R. Soc. A 465, 3605-3626. 


• Cortez, R., Fauci, L. & Medovikov, A. 2005 The method of regularized Stokeslets in 
three dimensions: Analysis, validation, and application to helical swimming. Physics 
of fluids 17, 1-14.


• Cortez, R. 2001 The method of regularized Stokeslets. SIAM J. Sci. Comput.23, 
1204-1225.


