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Stokes flow and Stokeslets

Stokes flow

* Re=ULlvxl

e Applications: motion of microorganisms, bubbles, MEMS devices etc.
Two important properties: linearity and time-independence
Stokeslet: the fundamental solution due to a Dirac-delta type point force. In 3D
Consider a regularized force F =f,¢), — aregularized Stokeslet

. d)e: a cutoff function, which has a finite radius of support

e ¢:a parameter which controls the spreading of a regularized force

Stokes equations

uVu—Vp+F=0
V.-u=0

5i' r.r.
J rJ
Sij(XO’ X) == 7 + —

73

Main idea: for a given force distribution, velocity field can be found via linear superposition of regularized

Stokeslets

1
U(XO) = %J f(X) . SG(XO, X)dS
S
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2D application |: flow past a cylinder

Set-up: A cylinder translating at speedu=1,v=0
N equally spaced discretization points
Step 1: Find the forces from the velocity BC
* Solve the matrix equation ) _ Z My(xpo. . 3,

Choose the 2D cutoff function:

363

Pelx) = 27 (|x|2 + €2)5/2°

e Note that matrix M (2N x 2N) is singular. Two ways to get a unique solution

e additional constraint: total normal force add to zero

e Or use GMRES with zero initial guess

Step 2: find the velocity field elsewhere via superposition

Compare with analytic solution (Stokes paradox)

Force distribution (N=100)

Velocity contours (solid line: exact
solution; dashed line: numerical solution)

Velocity u along x-axis




2D application ll: a self-propelled cylinder pair

Set-up:

e Two identical cylinders with a fixed separation rotating about their axes »

e Self-propelled:

e 3 additional scalar equations : 2F, =0 2XF, =0 27z =0
e 3 additional unknowns: overall translational velocity U and V and angular

velocity Q

Find the forces on the cylinder through the velocity BC using u,,, = Lf-U - Qxx
Then find the velocity elsewhere

Special case: counter-rotating at equal angular velocity

e Analytic solution exists: Jeffery’s solution

e Expect V= da’w/w

Cylinder 1: fx vs 0 Cylinder 1: fy vs 0
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Forces on each cylinder (w = 3a)

Numerical results: contours of ||ul|
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Velocity contours N= 200 (w = 8a)

Error plot for the case w = 8a
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2D application ll: a self-propelled cylinder pair

* Visualize the trajectory for arbitrary paths in the angle phase space
* Next step: optimize the efficiency of closed phase trajectories for a given input energy

Physical trajectory

counter-rotating

Phase trajectory

“Tilted square” 2
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Method of Regularized Stokeslets in 3D: the original method

1
e Similar to 2D, starting from the boundary integral equation, u(xy) = @[ f(x) - S°(xy, x)d S
S

e (Cortez et al (2005) derived that:

o for N Stokeslets located along the surface of the solid body D, the fluid velocity can
be approximate with

1 N
u(x,) = - Y owk, - Sxp.x,) (1)

e Where §¢ is the regularized Green’s function (regularized Stokeslet)
f, the Stokeslet strength, force per unit area or length
W, the quadrature weight of the nth particle

15¢*

8z(||x||*+ €272

e Here, we use the 3D cutoff function ¢.(x) =



3D problem: flow past a sphere

1 N
e The original approach: u(xg) = S Z wpt, - S6(xp, x,,) (1)
n=1

e Discretize the surface of a unit sphere using a six-patch structured grid.
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Projecting the 6 faces of cube onto the surface of the sphere

Each face of the cube is discretized with an N x N uniform grid.

Results:

Streamlines aty = 0 plane N =30
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evaluate the integral using trapezoidal rule.

Original method: relative error in U3 vs total DoFs (c = 0.01)
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A boundary element regularized Stokeslet method

Smith (2009): the original approach is equivalent to a constant-force boundary element method where low-order

quadrature in which the abscissae are identified with the collocation points.

Observation: The kernel S¢ varies rapidly close to x,

Thus, we decouple the force and the integration of the kernel.

Note:

o

I

w
T

N
T

Z
o

3
N

'
w

'
I

|

|

\

I

1 N
u(x,) = P Y owk, - S(xgx,) (1)
1 "y
u(x,) = - Z f - [ S¢(xg, X)dS  (2)
l’l=1 Sn

The choice of constant-force element is purely for simplicity: higher order methods maybe used

The integral maybe evaluated using any appropriate methods. E.g. Gauss-Legendre quadrature (12 x 12
points for ‘near-singular’ cases ; 4 x 4 points otherwise)
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Comparison of the two approaches

* Limiting factor: matrix setup and storage cost:
e e.g. halving the element width — 16 times # matrix elements
A method that gives accurate results with a relatively coarse mesh is beneficial.

* The boundary element approach is better — achieves high accuracy with fewer DoFs

no. kernel rel. % error

N DOF matrix entries evaluations in drag
Original method

6 x 12 x 12 2592 6.72 x 10° 6.72 x 10° 12.6

6 x 24 x 24 10368 1.07 x 108 1.07 x 108 2.76
6 x 36 x 36 23328 5.44 x 10% 5.44 x 10% 0.849
6 x 48 x 48 41472 1.72 x 10° 1.72 x 10? 0.265
Boundary element method

6 x3x3 162 26244 482112 0.827
6 x4 x4 288 82944 1.44 x 106 0.626
6 x6x6 648 419904 6.97 x 100 0.431
6x9x%x9 1458 2.12 x 10° 3.48 x 107 0.320
6 x 12 x 12 2592 6.72 x 10° 1.08 x 10% 0.279

(Smith 2009)



Summary

* We have reviewed and implemented the method of regularized Stokeslets in 2D and 3D for a few
cases.

* We can also use triangular meshes and solve for flows for other shapes or geometries.

* Next step: Triangular mesh for the sphere Stokes flow past a Stanford bunny

* we can extend the current approach using non-constant force elements, where the forces are
approximated by a set of basis functions.

e We will investigate other 3D swimming problems in Stokes flow, e.g. a self-propelled cylinder
pair, necklace-shaped swimmer etc.
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