A Literature Review of Variable Fidelity Methods and their Use in Airfoil Optimization

Laura Yenchesky

2.29 Final Project, Spring 2019

Outline

Aerodynamic Analysis and Optimization Methods

Surrogate Based Optimization

Application and Influence of VFO on Numerical Methods Numerical Example Other Approaches in VFM

Aerodynamic Analysis

- What are aerodynamic coefficients for a given surface?
 - ▶ C₁ Lift coefficient
 - ► C_d Drag coefficient

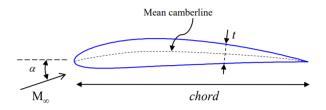


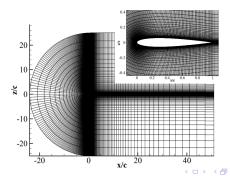
Figure: Sample NACA Airfoil

Aerodynamic Shape Optimization

Objective: use a search algorithm for the design of aerodynamic surfaces and adhere to appropriate constraints

History

- Conjugate-gradient method was first for 2D airfoil shapes (Hicks et al. 1974)
- Steepest-gradient method for 3D transonic wing design (Hicks and Henne 1978)
- Gradient-based and gradient-free approaches in use now



Gradient-Free vs Gradient-Based

Gradient-Free Approaches

- best for problems with a few design variables
- explore a search space
- exploit design as it approaches the global optimum
- successful in non-smooth design spaces
- requires large number of model evaluations (esp. in large design space)

Gradient-Free vs Gradient-Based

Gradient-Free Approaches

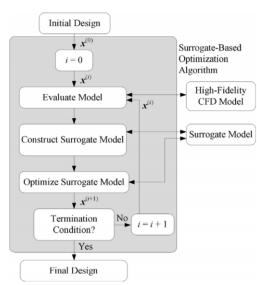
- best for problems with a few design variables
- explore a search space
- exploit design as it approaches the global optimum
- successful in non-smooth design spaces
- requires large number of model evaluations (esp. in large design space)

Gradient-Based Approaches

- applicable to problems with large number of design variables
- requires substantial amount of samples to ensure good accuracy
- cost of gradient calculation can be made nearly independent of number of design variables (with use of adjoint approach)
- considered current state of the art

Surrogate Modeling

- mathematical approximation that mimics the deterministic computationally expensive response or behavior of an original system
- improves global accuracy over entire domain
- approximates to the optimum to locally improve the current design



Surrogate Modeling

Challenges

- accuracy requirements
- computational efficiency
- grid deformations

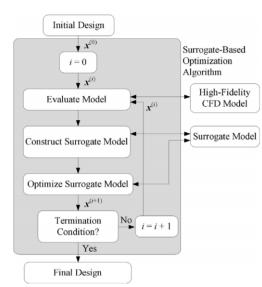
Surrogate Modeling

Challenges

- accuracy requirements
- computational efficiency
- grid deformations

Existing Categories

- Data Fit Models
- Reduced-Order Models
- Variable Fidelity Models



Variable Fidelity Optimization

- replace a computationally expensive model with a cheap surrogate model
- ▶ high-fidelity model f
- ▶ low-fidelity model *c*
- ▶ # of evaluations of f < # of evaluations of c

Variable Fidelity Optimization

- replace a computationally expensive model with a cheap surrogate model
- high-fidelity model f
- ▶ low-fidelity model c
- ▶ # of evaluations of f < # of evaluations of c
- convergence can be guaranteed with proper local search methods
- correction methods reduce prediction error
- reduces computation effort significantly at extremes of flight envelopes

Outline

Aerodynamic Analysis and Optimization Methods

Surrogate Based Optimization

Application and Influence of VFO on Numerical Methods Numerical Example

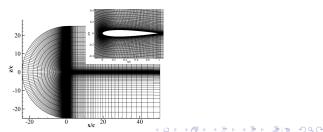
Other Approaches in VFM

Model Setup in Numerical Example

Example VFM High-Fidelity Model Setup

- ► **Geometry**: NACA Airfoil
- ► Flow Equations: steady RANS equations with turbulence model by Spalart and Allmaras
- ▶ **Grid Generation**: Structured curvilinear body-fitted C-topology (\sim 400,000 mesh cells and 1000 iteration limit)
- ► **Numerical Solver**: upwind-biased second-order Roe flux scheme performed in FLUENT; convergence by *L*² norm

Low-Fidelity Model: Coarser mesh and relaxed convergence criteria (\sim 32,000 cells and 100 iteration limit)



Correction Method: Output Space Mapping (linear transformations or mappings)

$$ec{X_d} = ext{design variable}$$
 $ec{S_{al}} = ext{vector of uncertain variables}$
 $\mathbf{x} = \left[ec{X_d} \ ec{S_{al}} \right]^T$
 $C_{l,f}, C_{d,f} = ext{high fidelty lift and drag}$
 $f(x) = \left[C_{l,f}(x) \ C_{d,f}(x) \right]^T$
 $C_{l,c}, C_{d,c} = ext{low fidelty lift and drag}$
 $s(x) = A(x) \circ c(x) = \left[a_l(x) \ C_{l,c}(x) + d_1 \ a_d(x) \ C_{d,c}(x) + d_d \right]^T$

Response correction parameters

center of the design space
$$\mathbf{x}^0 = (\mathbf{x}^L + \mathbf{x}^U)/2$$

 $\mathbf{A}(\mathbf{x}) = [a_{l.0} + [a_{l.1} \, a_{l.2} \, \dots \, a_{l.n}] \cdot (\mathbf{x} - \mathbf{x}^0) \quad a_{d.0} + [a_{d.1} \, a_{d.2} \, \dots \, a_{d.n}] \cdot (\mathbf{x} - \mathbf{x}^0)]^T$
Response correction parameters \mathbf{A} and \mathbf{D}
 $[\mathbf{A}, \mathbf{D}] = \arg\min_{\overline{\mathbf{A}}, \overline{\mathbf{D}}} \sum_{k=1}^{K} ||f(\mathbf{x}^k) - (\overline{\mathbf{A}}(\mathbf{x}^k) \circ c(\mathbf{x}^k) + \mathbf{D})||^2$,

Least-square optimal solution to the linear regression

correction parameters **A** and **D**

$$\mathbf{C}_{d} = \begin{bmatrix} a_{l,0} \\ a_{l,1} \\ \vdots \\ a_{l,n} \\ d_{l} \end{bmatrix} = (\mathbf{C}_{l}^{T} \mathbf{C}_{l})^{-1} \mathbf{C}_{l}^{T} \mathbf{F}_{l}, \begin{bmatrix} a_{d,0} \\ a_{d,1} \\ \vdots \\ a_{d,n} \\ d_{d} \end{bmatrix} = (\mathbf{C}_{d}^{T} \mathbf{C}_{d})^{-1} \mathbf{C}_{d}^{T} \mathbf{F}_{d}$$

$$\mathbf{C}_{l} = \begin{bmatrix} C_{l,c}(\mathbf{x}^{1}) & C_{l,c}(\mathbf{x}^{1}) \cdot (\mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{0}) & \cdots & C_{l,c}(\mathbf{x}^{1}) \cdot (\mathbf{x}_{n}^{1} - \mathbf{x}_{n}^{0}) & 1 \\ C_{l,c}(\mathbf{x}^{2}) & C_{l,c}(\mathbf{x}^{2}) \cdot (\mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{0}) & \cdots & C_{l,c}(\mathbf{x}^{2}) \cdot (\mathbf{x}_{n}^{2} - \mathbf{x}_{n}^{0}) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{l,c}(\mathbf{x}^{K}) & C_{l,c}(\mathbf{x}^{K}) \cdot (\mathbf{x}_{1}^{K} - \mathbf{x}_{1}^{K}) & \cdots & C_{l,c}(\mathbf{x}^{K}) \cdot (\mathbf{x}_{n}^{2} - \mathbf{x}_{n}^{0}) & 1 \\ \end{bmatrix}$$

$$\mathbf{F}_{l} = \begin{bmatrix} C_{l,f}(\mathbf{x}^{1}) & C_{l,f}(\mathbf{x}^{2}) & \cdots & C_{l,f}(\mathbf{x}^{K}) \end{bmatrix}^{T}$$

$$\mathbf{C}_{d} = \begin{bmatrix} C_{d,c}(\mathbf{x}^{1}) & C_{d,c}(\mathbf{x}^{1}) \cdot (\mathbf{x}_{1}^{1} - \mathbf{x}_{1}^{0}) & \cdots & C_{d,c}(\mathbf{x}^{1}) \cdot (\mathbf{x}_{n}^{1} - \mathbf{x}_{n}^{0}) & 1 \\ C_{d,c}(\mathbf{x}^{2}) & C_{d,c}(\mathbf{x}^{2}) \cdot (\mathbf{x}_{1}^{2} - \mathbf{x}_{1}^{0}) & \cdots & C_{d,c}(\mathbf{x}^{2}) \cdot (\mathbf{x}_{n}^{2} - \mathbf{x}_{n}^{0}) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ C_{d,c}(\mathbf{x}^{K}) & C_{d,c}(\mathbf{x}^{K}) \cdot (\mathbf{x}_{1}^{K} - \mathbf{x}_{1}^{K}) & \cdots & C_{d,c}(\mathbf{x}^{K}) \cdot (\mathbf{x}_{n}^{2} - \mathbf{x}_{n}^{0}) & 1 \\ \end{bmatrix}$$

$$\mathbf{F}_{d} = \begin{bmatrix} C_{d,f}(\mathbf{x}^{1}) & C_{d,f}(\mathbf{x}^{2}) & \cdots & C_{d,f}(\mathbf{x}^{K}) \end{bmatrix}^{T}$$

Design variable vector \vec{X}_d with NACA shape parameters m, p, t/c

$$\vec{X}_d = [m \ p \ t/c \ \alpha]^T$$

$$0.0 \le m \le 0.05$$

$$0.3 \le p \le 0.7$$

$$0.08 \le t/c \le 0.14$$

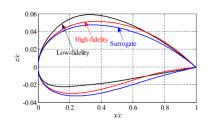
$$0^\circ \le \alpha \le 2^\circ$$

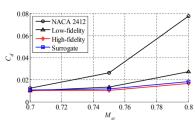
$$0.7 \le M_\infty \le 0.8$$

with NACA 2412

Results

Variable	Low-fidelity	High-fidelity	Surrogate
m	0.0198	0.0150	0.0100
p	0.3607	0.6287	0.6220
t/c	0.0800	0.0800	0.0800
$\alpha \ [\mathrm{deg}]$	1.5991	0.9232	0.9598
μ_{C_l}	0.4978	0.5186	0.5379
μ_{C_d}	0.0656	0.0348	0.03768
σ_{C_d}	0.0056	0.0040	0.0064
N_c	42	0	53
N_f	0	42	11
N	< 1	42	< 12



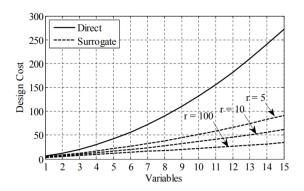


Results

Total cost $\propto \# \text{ (design variables)}^2$

$$N = n^2 + 3n + 2$$
$$N = N_f + N_c/r$$

where r is ratio of high- to low-fidelity simulation times



Outline

Aerodynamic Analysis and Optimization Methods

Surrogate Based Optimization

Application and Influence of VFO on Numerical Methods Numerical Example Other Approaches in VFM

Correction Methods

- Space mapping (used in example)
 - simple to implement
- Multi-level optimization
 - uses multiple models so that each iteration of the algorithm requires a smaller number of model evaluations
 - considered more efficient than SM by Leifsson
- Shape-preserving response prediction
 - works at pressure distribution level (rather than aerodynamic forces directly)
- Weight gradients
 - adjust influence of linear and multiplicative corrections

Case 1 (lift maximization) $M_{\infty} = 0.75, \alpha = 0^{\circ}, C_{\text{dw,max}} = 0.005, A_{\text{min}} = 0.075$						
Variable	Initial	MLO	SM	SPRP		
m	0.0200	0.0148	0.0150	0.0145		
p	0.4000	0.7743	0.7463	0.7723		
t/c	0.1200	0.1114	0.1140	0.1135		
C_l	0.4745	0.5933	0.5650	0.5576		
C_{dw}	0.0115	0.0050	0.0050	0.0050		
A	0.0808	0.0750	0.0767	0.0767		
$N_c^{a,b}$	-	60/47	210	180		
N_f^a	-	2	4	6		
Cost	_	~5	~7	~10		

Other Approaches in VFM

Data Fusion Techniques

- Kriging
 - method of interpolating values with a Gaussian process
- Co-Kriging
 - uses information from other variables
 - ▶ predicts 2500 × 2 cases in 0.023 seconds
 - picks up viscous phenomena from high fidelity samples
- Co-Kriging POD
 - data: orthonormal set of basis functions to linear subspace
- Direct Gradient Enhanced Kriging (GEK)
 - incorporates gradients into Kriging
- Generalized Hybrid Bridge Function (GHBF)
 - exploits prediction value in low fidelity data
- Upgrade key points from low to high fidelity

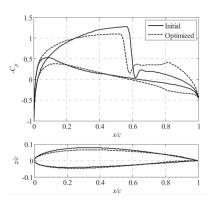
Summary

 $\begin{array}{l} {\sf Aerodynamic\ opt\ \rightarrow\ gradient\text{-}based} \\ {\to\ surrogate\ \rightarrow\ variable\ fidelity} \end{array}$

- Relatively low computational cost (less than 30% in provided example)
- Similar results to high-fidelity
- Effective correction and data fusion techniques

Future Efforts

- Development of tool boxes that minimize hand coding
- Identification of best practices for data fusion and correction methods



For Further Reading I

Yondo, et al.

A Review of Surrogate Modeling Techniques for Aerodynamic Analysis and Optimization: Current Limitations and Future Challenges in Industry.

Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, Computational Methods

Springer International Publishing AG 2019

Leisson, L and Koziel, S

Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress

Journal of Computational Science, 10 (2015) 45-54.

Martins, J and Kennedy, G

Enabling Large-scale Multidisciplinary Design Optimization through Adjoint Sensitivity Analysis

57th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2019

For Further Reading II

Likeng, et al.

Research on multi-fidelity aerodynamic optimization methods Chinese Journal of Aeronautics, 2013, 26(2): 279-286

Zhang, et al.

Variable Fidelity Methods and Surrogate Modeling of Critical Loads on X-31 Aircraft

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013

Leifsson, L and Koziel, S.

Low-Cost Robust Airfoil Optimization by Variable-Fidelity Models and Stochastic Expansions

51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013

Han, et all.

Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function

Aerospace Science and Technology 25 (2013) 177-189

