Challenges in Solving the Seakeeping Problem	Numerical Techniques Description	
	0	

Influence of Viscosity and Non-linearities in Predicting Motions of a Wind Energy Offshore Platform In Regular Waves

José del Águila Ferrandis

May 15, 2019

イロト イポト イヨト イヨト

José del Águila Ferrandis

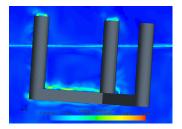
Introduction •	Challenges in Solving	; the Seakeeping Problem	Numerical 0 0	Techniques Description	Results 0
Numerical Techniques	llsed		ŏoooo		ŏ
Codes Use					
	n. Freq. m. BEM	Engineer's Toolbox	\rightarrow	URANS Simulation An Time 155.94 (s)	ANNY 1111
				・四・・ヨ・・ヨ・	≣ ୬ ୯ ୯ 2

José del Águila Ferrandis

Techniques Des	

Challenges in Solving the Seakeeping Problem

- Numerical models give the possibility of full scale prediction.
- Froude & Reynolds incomplete similarity.
- Viscous codes allow for better accuracy at resonance.
- Viscous codes can also calculate large non-linear motions & wave breaking.



イロト イポト イヨト イヨト

Figure: 3DOF extreme weather

José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description	Results
		0 00000	0
Linear Frequency Do	main BEM		

Linear Frequency Domain BEM

Solve Laplace Equation:

$$abla^2(\phi) = 0$$

Given the BCs:

$$\begin{array}{ll} g\eta + \frac{\partial \phi}{\partial t} = 0 & \text{at} & z = 0 \\ \frac{\partial \eta}{\partial t} - \frac{\partial \phi}{\partial z} = 0 & \text{at} & z = 0 \\ \frac{\partial \phi}{\partial z} = 0 & \text{at} & z = -h \end{array}$$

Potential Decomposed:

$$\phi = \phi_D + \phi_R = \phi_I + \phi_S + \phi_R$$

Eq. Dipole Moments:

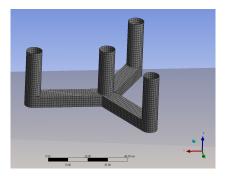


Figure: Mesh in freq. dom. BEM.

イロト イロト イヨト イヨト

э

$$\begin{pmatrix} 2\pi \\ 4\pi \end{pmatrix} \phi_D(\mathbf{x}) + \iint_{S_b} \phi_D G_{n_{\xi}} dS_{\xi} = 4\pi \phi_I(\mathbf{x})$$

José del Águila Ferrandis

 Numerical Techniques Description
 Results

 •
 •
 •

 •
 •
 •

 •
 •
 •

Non-linear Time Domain BEM

Non-linear Time Domain BEM

- During the non-linear calculations, the intersection between the free surface and the platform is calculated. B-splines used to represent perturbation potential in the wet hull parametric space.
- The kinematic and dynamic free surface conditions are both expanded in a Taylor-series about the base flow:

$$\zeta\left(\frac{\partial}{\partial t} - (\vec{U} - \nabla\Phi) \cdot \nabla\right) = \frac{\partial^2 \Phi}{\partial z^2} \zeta + \frac{\partial \phi}{\partial z}$$

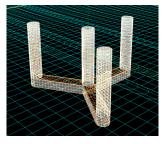


Figure: Mesh example.

イロト イポト イヨト イヨト

$$\phi\left(\frac{\partial}{\partial t}-(\vec{U}-\nabla\Phi)\cdot\nabla\right)=-g\left(\zeta+z_{m}\right)+\left(\vec{U}\cdot\nabla\Phi-\frac{1}{2}\nabla\phi\cdot\nabla\phi\right)$$

José del Águila Ferrandis

Introduction 0

Time-Domain Fully Viscous Model - URANS

Time-Domain Fully Viscous Model - URANS - VOF

Volume of Fluid Method. Averaged continuity and momentum equations for incompressible fluids.

$$\begin{aligned} \frac{\partial \left(\overline{\rho u_i}\right)}{\partial x_i} &= 0\\ \frac{\partial \left(\overline{u u_i}\right)}{\partial x_j} \left(\rho \overline{u}_i \overline{u}_j + \rho \overline{u'_i u'_j}\right) &= \frac{\partial \overline{p}}{\partial x_i} + \frac{\partial \overline{\tau}_{ij}}{\partial x_j}\\ \overline{\tau}_{ij} &= \mu \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}\right) \end{aligned}$$

Simple Implicit Time Advancing Scheme is used.

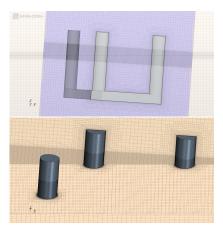


Figure: Mesh in URANS = ∽૧ભ

José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description ○ ○ ○●○○○	
Time-Domain Fully	Viscous Model - URANS		

Mesh & Time-step Convergence.

- Values of \mathbf{y} + \sim 55 on average \longleftrightarrow SST-Menter-k- ω
- Volume of fluid Method (VOF).
- DFBI + Overset grids to simulate Heave and Pitch Motions (head seas).
- Time-step given by Courant Number on the free surface.

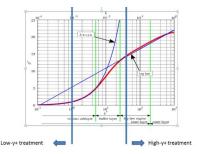


Figure: High Wall y+ treatment for high y+ numbers.

イロト イポト イヨト イヨト

José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description o o 00000	
Time-Domain Fully	Viscous Model - URANS		

Mesh & Time-step Convergence.

- Wave probe in the undisturbed region. The signal obtained is compared to the theoretical profile of a 1st order Stokes wave.
- Discrepancies are due to surface capturing technique and mesh resolution across the free surface.
- To account for this, we consider the wave amplitude obtained by applying a Fast Fourier Transform to the numerical wave profile.

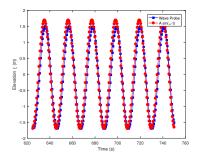


Figure: Numerical wave profile corresponds to the blue line.

イロト イボト イヨト イヨト

José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description	
		00000	
Time Domain Fully	liccour Model LIPANS		

Mesh & Time-step Convergence.

	Mesh Sensitivity Analysis–RAO Variation											
T _w	18s			T _w 18s 19s				19	.5s			
Mesh	e ₃₃	e_{55}	cells	y+	e ₃₃	e ₅₅	cells	y+	e ₃₃	e ₅₅	cells	y+
MR1	29%	5%	2e6	424	9%	11%	2e6	377	9%	6%	1e6	356
MR2	30%	4%	3e6	317	7%	9%	3e6	315	11%	6%	2e6	305
MR3	8%	1%	беб	167	4%	1%	беб	157	2%	2%	3e6	137
Final	0%	0%	7e6	49	0%	0%	8e6	50	0%	0%	4e6	48

T _w	20s			21s			30s					
Mesh	e ₃₃	e ₅₅	cells	y+	e ₃₃	e_{55}	cells	y+	e ₃₃	e_{55}	cells	y+
MR1	3%	10%	1e6	361	0%	15%	1e6	351	0%	5%	1e6	331
MR2	3%	10%	2e6	303	1%	11%	2e6	280	1%	2%	2e6	160
MR3	2%	3%	Зеб	131	1%	4%	3e6	119	0%	0%	3e6	105
Final	0%	0%	5e6	46	0%	0%	5e6	40	0%	0%	4e6	55

Table: Results of the convergence of the RAOs in a mesh sensitivity analysis considering **4 levels of refinement**. Convergence is quickly reached in all wave periods except for $T_w = 18s$. For this reason mesh *Final* is used.

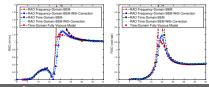
José del Águila Ferrandis

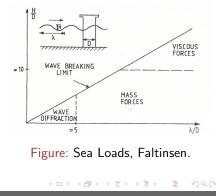
	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description	
		° 00000●	
Time Domain Fully	Viscous Model LIRANS		

l ime-Domain Fully Viscous Model - URANS

Mesh & Time-step Convergence.

T _w	λ_w	H _w	T _{step}
10.00 13.00 15.00 16.00 16.73 18.00 19.00 19.50 20.00 21.00	156.131 263.861 351.293 399.702 437.523 505.864 563.633 593.688 624.524 688.538	$\begin{array}{c} 2 \times 0.771 \\ 2 \times 1.303 \\ 2 \times 1.735 \\ 2 \times 1.971 \\ 2 \times 2.160 \\ 2.498 \\ 2.783 \\ 2.932 \\ 3.084 \\ 3.400 \end{array}$	0.012 0.0155 0.0179 0.0190 0.023 0.023 0.023 0.023 0.024 0.025
30.00	1405.179	6.939	0.036





José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description o ooooo	Results o
Cross-validation of Nu	umerical Results		

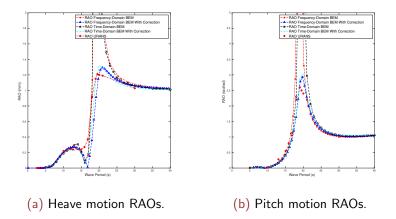


Figure: Additional damping is introduced in a second set BEM simulations. Empirical damping selected given URANS (6.25%, 6.5%).

イロト イポト イヨト イヨト

José del Águila Ferrandis

	Challenges in Solving the Seakeeping Problem	Numerical Techniques Description	Results
			0
Conclusions			

- Limitation of potential flow models in motions for waves having periods close to the natural & cancellation frequencies.
- Corrections coefficients can be obtained from URANS.
- computational burden: 1-175-700,000.
- Very similar predictions for small motions only requiring URANS near the resonance and cancellation period.

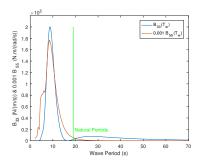


Figure: B_{33} and B_{55} radiation damping coefficients.

イロト イポト イヨト イヨト

José del Águila Ferrandis