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Challenges in Solving the Seakeeping Problem

Numerical models give the possibility of full scale
prediction.

Froude & Reynolds incomplete similarity.

Viscous codes allow for better accuracy at
resonance.

Viscous codes can also calculate large non-linear
motions & wave breaking.

Figure: 3DOF extreme weather
conditions, non-linear motions. Figure: Vorticity Magnitude.
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Linear Frequency Domain BEM

Linear Frequency Domain BEM
Solve Laplace Equation:

∇2(φ) = 0

Given the BCs:

gη + ∂φ
∂t

= 0 at z = 0
∂η
∂t
− ∂φ

∂z
= 0 at z = 0

∂φ
∂z

= 0 at z = −h

Potential Decomposed:

φ = φD + φR = φI + φS + φR

Eq. Dipole Moments:(
2π
4π

)
φD(x)+

¨
Sb

φDGnξdSξ = 4πφI (x)

Figure: Mesh in freq. dom. BEM.
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Non-linear Time Domain BEM

Non-linear Time Domain BEM

During the non-linear calculations,
the intersection between the free
surface and the platform is
calculated. B-splines used to
represent perturbation potential in
the wet hull parametric space.

The kinematic and dynamic free
surface conditions are both expanded
in a Taylor-series about the base
flow:

ζ

(
∂

∂t
− ( ~U −∇Φ) · ∇

)
=
∂2Φ

∂z2
ζ+

∂φ

∂z

φ

(
∂

∂t
− ( ~U −∇Φ) · ∇

)
= −g (ζ + zm)+

(
~U · ∇Φ−

1

2
∇φ · ∇φ

)Figure: Mesh example.
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Time-Domain Fully Viscous Model - URANS

Time-Domain Fully Viscous Model - URANS - VOF

Volume of Fluid Method. Averaged
continuity and momentum equations
for incompressible fluids.

∂ (ρui )

∂xi
= 0

∂ (uui )

∂xj

(
ρuiuj + ρu′i u

′
j

)
=
∂p

∂xi
+
∂τ ij

∂xj

τ ij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
Simple Implicit Time Advancing
Scheme is used.

Figure: Mesh in URANS.
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Time-Domain Fully Viscous Model - URANS

Mesh & Time-step Convergence.

Values of y+ ∼ 55 on average
←→ SST-Menter-k-ω.

Volume of fluid Method
(VOF).

DFBI + Overset grids to
simulate Heave and Pitch
Motions (head seas).

Time-step given by Courant
Number on the free surface.

Figure: High Wall y+ treatment for
high y+ numbers.
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Time-Domain Fully Viscous Model - URANS

Mesh & Time-step Convergence.

Wave probe in the undisturbed
region. The signal obtained is
compared to the theoretical
profile of a 1st order Stokes
wave.

Discrepancies are due to surface
capturing technique and mesh
resolution across the free surface.

To account for this, we consider
the wave amplitude obtained by
applying a Fast Fourier Transform
to the numerical wave profile.
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Figure: Numerical wave profile
corresponds to the blue line.
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Time-Domain Fully Viscous Model - URANS

Mesh & Time-step Convergence.

Mesh Sensitivity Analysis–RAO Variation
Tw 18s 19s 19.5s

Mesh e33 e55 cells y+ e33 e55 cells y+ e33 e55 cells y+
MR1 29% 5% 2e6 424 9% 11% 2e6 377 9% 6% 1e6 356
MR2 30% 4% 3e6 317 7% 9% 3e6 315 11% 6% 2e6 305
MR3 8% 1% 6e6 167 4% 1% 6e6 157 2% 2% 3e6 137
Final 0% 0% 7e6 49 0% 0% 8e6 50 0% 0% 4e6 48

Tw 20s 21s 30s
Mesh e33 e55 cells y+ e33 e55 cells y+ e33 e55 cells y+
MR1 3% 10% 1e6 361 0% 15% 1e6 351 0% 5% 1e6 331
MR2 3% 10% 2e6 303 1% 11% 2e6 280 1% 2% 2e6 160
MR3 2% 3% 3e6 131 1% 4% 3e6 119 0% 0% 3e6 105
Final 0% 0% 5e6 46 0% 0% 5e6 40 0% 0% 4e6 55

Table: Results of the convergence of the RAOs in a mesh sensitivity
analysis considering 4 levels of refinement. Convergence is quickly
reached in all wave periods except for Tw = 18s. For this reason mesh
Final is used.
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Time-Domain Fully Viscous Model - URANS

Mesh & Time-step Convergence.

Tw λw Hw Tstep

10.00 156.131 2 × 0.771 0.012
13.00 263.861 2 × 1.303 0.0155
15.00 351.293 2 × 1.735 0.0179
16.00 399.702 2 × 1.971 0.0190
16.73 437.523 2 × 2.160 0.0199
18.00 505.864 2.498 0.023
19.00 563.633 2.783 0.023
19.50 593.688 2.932 0.023
20.00 624.524 3.084 0.024
21.00 688.538 3.400 0.025
30.00 1405.179 6.939 0.036

0 5 10 15 20 25 30 35 40

Wave Period (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
A

O
 (

m
/m

)

RAO Frequency-Domain BEM

RAO Frequency-Domain BEM With Correction

RAO Time-Domain BEM

RAO Time-Domain BEM With Correction

Time-Domain Fully Viscous Model

0 5 10 15 20 25 30 35 40

Wave Period (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
A

O
 (

ra
d
/r

a
d
)

RAO Frequency-Domain BEM

RAO Frequency-Domain BEM With Correction

RAO Time-Domain BEM

RAO Time-Domain BEM With Correction

Time-Domain Fully Viscous Model

Figure: Sea Loads, Faltinsen.
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Cross-validation of Numerical Results
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(a) Heave motion RAOs.
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(b) Pitch motion RAOs.

Figure: Additional damping is introduced in a second set BEM simulations.
Empirical damping selected given URANS (6.25%,6.5%).
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Conclusions

Limitation of potential flow
models in motions for waves
having periods close to the
natural & cancellation
frequencies.

Corrections coefficients can
be obtained from URANS.

computational burden:
1-175-700,000.

Very similar predictions for
small motions only requiring
URANS near the resonance
and cancellation period.
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Figure: B33 and B55 radiation
damping coefficients.
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