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Motivation

• Compressible, and specifically hypersonic, 
boundary layers can have complex velocity 
and temperature profiles

• Lees-Doroditsyn transformation results in 
decreased need for boundary layer scaling

• Boundary layer analysis is necessary to 
assess surface heating, skin friction, and 
external flow displacement effects

• Developing robust methods for modeling 
hypersonic boundary layers 
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TSL L-D Coordinate Transformation
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Lees-Dorodnitsyn Equations
• For 2D, Laminar, Compressible Boundary Layers

• Effectively Parabolic

• 5th Order system of coupled equations

• Introduce F, U, S, H, and Q to simplify into 5 - 1st order equations

◦ 𝐹 = 𝑓 =
𝜑

2𝜉
(stream function relation)

◦ 𝑈 =
𝜕𝑓

𝜕𝜂
=

𝑢

𝑢𝑒
(velocity relation)

◦ 𝑆 =
𝜕𝑈

𝜕𝜂
=

𝜕2𝑓

𝜕𝜂2
(shear stress relation)

◦ 𝐻 = 𝑔 =
ℎ

ℎ𝑒
=

𝑇

𝑇𝑒
=

𝜌𝑒

𝜌
(enthalpy/temperature relation)

◦ 𝑄 =
𝜕𝑔

𝜕𝜂
=

𝜕𝐻

𝜕𝜂
(heat transfer relation)

5/12/2020 C. ONYEADOR 4



Flow Parameters

FLUID MODELS

• Viscosity Sutherland’s Law

◦ 𝜇 =
𝜇𝑟𝑒𝑓

𝑇

𝑇𝑟𝑒𝑓

3
2
𝑇𝑟𝑒𝑓+𝑆𝑟𝑒𝑓

𝑇+𝑆𝑟𝑒𝑓

• Calorically Perfect Gas 

◦ ℎ = 𝑐𝑝𝑇

◦ 𝛾 = 1.4

• Constant Pr

◦ 0.71 (Van Driest), 0.75, or 1 

• Isothermal wall

SPECIFIED PARAMETERS

◦ 𝜉𝑚𝑎𝑥

◦ 𝜂𝑒
◦ 𝑇𝑒 → ℎ𝑒
◦ 𝑀𝑎𝑒 𝜉 → 𝑢𝑒

◦
ℎ𝑤

ℎ𝑒
→ ℎ𝑤

◦ 𝑃𝑒 = 𝜌𝑒
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Boundary Conditions
• 5 Required for a 5th Order system:

• Wall:

◦ 𝐹𝑤𝑎𝑙𝑙 = 0

◦ 𝑈𝑤𝑎𝑙𝑙 = 0

◦ 𝐺𝑤𝑎𝑙𝑙 = 𝐺𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑

• Edge:

◦ 𝑈𝑒𝑑𝑔𝑒 = 1

◦ 𝐺𝑒𝑑𝑔𝑒 = 1

• Initial condition @ 𝜉 = 0

◦ 1D Flat plate similarity solution (calculated with Newton-Raphson method) 
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Residual Form
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𝐹, 𝑈, 𝑆, 𝐻, 𝑄 are unknowns
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Finite Difference Stencil
BOX SCHEME

• Space-march in 𝜉 direction

• 2nd Order

• Centered Difference in both directions

• Similar to Crank Nicholson

3-POINT BACKWARD DIFFERENCE

• Space-march in 𝜉 direction

• 2nd Order

• Centered Difference in 𝜂

• 3-pt Backward Difference in 𝜉
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Box Stencil
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3pt - Backward Stencil
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3pt - Backward Stencil
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Newton-Raphson Solver
• Necessary for Non-linear system

• 10 – Diagonal Sparse Matrix

• Analytically calculated jacobian

• Utilized MATLAB built in matrix solver

• Quadratic convergence

• Convergence criteria based on magnitude of 
max residual
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Matrix pattern
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Newton vs. MATLAB FSolve
• Compared the Newton-Raphson Method against MATLAB’s nonlinear solver 

• Fsolve is a quasi-Newton method

• Assumed both solution methods had similar accuracies 
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Newton-Raphson MATLAB FSolve

Runtime 6-7 sec 116 sec

# of Iterations 3-4 2

Implementation Complexity ~650 lines ~125 lines

#  of Function Evaluations 525 243

(Solved for 30 x 30 system)
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Selected Results

5/12/2020 C. ONYEADOR 15



Error Analysis
• L2 Error Analysis of 𝛿∗ 𝜉 , displacement 

thickness

• Compared to solution with fine resolution

• Roughly 2nd order convergence, as expected

• Comparable performance of Box Scheme and 3-
pt scheme
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Conclusions
• Newton-Raphson (in this case) is significantly preferable to FSolve

• Stability is not a significant concern for the backwards difference scheme

• Oscillations are not present in the box scheme

• There is no clear advantage to using the box scheme instead of the 3-pt backwards difference

• Further sampling of the solution space may be necessary to determine overall behavior of 
solution methods
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Thank you
Questions?
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Appendix
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Chapman Rubesin factor
• 𝐶 = 𝐶 𝑔

• 𝐶
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2 = 𝐶 𝑔
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+ 𝐶 𝑔𝑖+1

𝑗
+ 𝐶 𝑔𝑖

𝑗+1
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Similarity Equations

𝐶𝑓′′ ′ + 𝑓𝑓′′ = 0

𝐶

𝑃𝑟
𝑔′

′

+ 𝑓𝑔′ + 𝐶
𝑢𝑒
2

ℎ𝑒
𝑓′′ 2 = 0

F′ = 𝑈

𝑈′ = 𝑆

𝐶𝑆 ′ + 𝐹𝑆 = 0

𝐻′ = 𝑄

𝐶

𝑃𝑟
𝑄

′

+ 𝐹𝑄 + 𝐶
𝑢𝑒
2

ℎ𝑒
𝑆 2 = 0

𝑔 = 𝐻

𝑓 = 𝐹

2 - Coupled 2nd and 3rd Order Diff. Eqns 5 - Coupled 1st Order ODEs (Drela Notation)

Where 𝜙′ =
𝜕𝜙

𝜕𝜂
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