Finite Difference Solutions to the Lees-Dorodnitsyn Compressible Boundary Layer Equations

Chelsea Onyeador
May 12, 2020
2.29 Final Project

Motivation

$$
M_{e} \gg 1
$$

- Compressible, and specifically hypersonic, boundary layers can have complex velocity and temperature profiles
- Lees-Doroditsyn transformation results in decreased need for boundary layer scaling
- Boundary layer analysis is necessary to assess surface heating, skin friction, and external flow displacement effects
- Developing robust methods for modeling hypersonic boundary layers

TSL L-D Coordinate Transformation

$$
\begin{gathered}
\xi=\int_{0}^{x} \rho_{e} u_{e} \mu_{e} d x \quad \eta=\frac{u_{e}}{\sqrt{2 \xi}} \int_{0}^{y} \rho d y \\
\left(C f^{\prime \prime}\right)^{\prime}+f f^{\prime \prime}=\frac{2 \xi}{u_{e}}\left[\left(f^{\prime}\right)^{2}-\frac{\rho_{e}}{\rho}\right] \frac{d u_{e}}{d \xi}+2 \xi\left(f^{\prime} \frac{\partial f^{\prime}}{\partial \xi}-\frac{\partial f}{\partial \xi} f^{\prime \prime}\right) \\
\frac{\partial p}{\partial \eta}=0 \\
\left(\frac{C}{P r} g^{\prime}\right)^{\prime}+f g^{\prime}=2 \xi\left[f^{\prime} \frac{\partial g}{\partial \xi}+\frac{f^{\prime} g}{h_{e}} \frac{\partial h_{e}}{\partial \xi}-g^{\prime} \frac{\partial f}{\partial \xi}+\frac{\rho_{e} u_{e}}{\rho h_{e}} f^{\prime} \frac{d u_{e}}{d \xi}\right]-C \frac{u_{e}^{2}}{h_{e}}\left(f^{\prime \prime}\right)^{2}
\end{gathered}
$$

$$
C=\frac{\rho \mu}{\rho_{e} \mu_{e}}, g=\frac{h}{h_{e}}, \text { and, } f^{\prime}=\frac{u}{u_{e}}
$$

Lees-Dorodnitsyn Equations

- For 2D, Laminar, Compressible Boundary Layers
- Effectively Parabolic
- $5^{\text {th }}$ Order system of coupled equations
- Introduce F, U, S, H, and Q to simplify into 5-1 $1^{\text {st }}$ order equations
- $F=f=\frac{\varphi}{\sqrt{2 \xi}}$ (stream function relation)
- $U=\frac{\partial f}{\partial \eta}=\frac{u}{u_{e}}$ (velocity relation)
- $S=\frac{\partial U}{\partial \eta}=\frac{\partial^{2} f}{\partial \eta^{2}}$ (shear stress relation)
- $H=g=\frac{h}{h_{e}}=\frac{T}{T_{e}}=\frac{\rho_{e}}{\rho}$ (enthalpy/temperature relation)
- $Q=\frac{\partial g}{\partial \eta}=\frac{\partial H}{\partial \eta}$ (heat transfer relation)

Flow Parameters

FLUID MODELS

- Viscosity Sutherland's Law

。 $\mu=\frac{\mu_{r e f}\left(\frac{T}{T_{r e f}}\right)^{\frac{3}{2}}\left(T_{r e f}+S_{r e f}\right)}{T+S_{r e f}}$

- Calorically Perfect Gas
- $h=c_{p} T$
${ }^{\circ} \gamma=1.4$
- Constant Pr
- 0.71 (Van Driest), 0.75 , or 1
- Isothermal wall

SPECIFIED PARAMETERS

- $\xi_{\text {max }}$
- η_{e}
- $T_{e} \rightarrow h_{e}$
- $M a_{e}(\xi) \rightarrow u_{e}$
$\circ \frac{h_{w}}{h_{e}} \rightarrow h_{w}$
${ }^{-} P_{e}=\rho_{e}$

Flow Parameters

FLUID MODELS

- Viscosity Sutherland's Law

$$
\circ \mu=\frac{\mu_{r e f}\left(\frac{T}{T_{r e f}}\right)^{\frac{3}{2}}\left(T_{r e f}+S_{r e f}\right)}{T+S_{r e f}}
$$

- Calorically Perfect Gas

$$
\circ h=c_{p} T
$$

$$
\circ \gamma=1.4
$$

- Constant Pr
- 0.71 (Van Driest), 0.75 , or 1
- Isothermal wall

SPECIFIED PARAMETERS

- $\xi_{\text {max }}$
${ }^{-} \eta_{e}$
${ }^{\circ} T_{e} \rightarrow h_{e}$
$-M a_{e}(\xi) \rightarrow u_{e}$
$-\frac{h_{w}}{h_{e}} \rightarrow h_{w}$
${ }^{-} P_{e}=\rho_{e}$

Boundary Conditions

- 5 Required for a $5^{\text {th }}$ Order system:
- Wall:
- $F_{\text {wall }}=0$
- $U_{\text {wall }}=0$
- $G_{\text {wall }}=G_{\text {specified }}$
- Edge:
- $U_{\text {edge }}=1$
- $G_{\text {edge }}=1$
- Initial condition @ $\xi=0$
- 1D Flat plate similarity solution (calculated with Newton-Raphson method)

Residual Form

$$
\begin{gathered}
\mathrm{F}^{\prime}-U=0 \\
U^{\prime}-S=0 \\
(C S)^{\prime}+F S+\frac{2 \xi}{u_{e}}\left[H-(U)^{2}\right] \frac{d u_{e}}{d \xi}+2 \xi\left(\frac{\partial F}{\partial \xi} S-U \frac{\partial U}{\partial \xi}\right)=0 \\
\left(\frac{C}{P r} Q\right)^{\prime}+F Q-2 \xi\left[U \frac{\partial H}{\partial \xi}+\frac{U H}{h_{e}} \frac{\partial h_{e}}{\partial \xi}-Q \frac{\partial F}{\partial \xi}+\frac{H u_{e}}{h_{e}} U \frac{d u_{e}}{d \xi}\right]+C \frac{u_{e}^{2}}{h_{e}}(S)^{2}=0 \\
H^{\prime}-Q \\
=0
\end{gathered}
$$

F, U, S, H, Q are unknowns

Finite Difference Stencil

BOX SCHEME

- Space-march in ξ direction
- $2^{\text {nd }}$ Order
- Centered Difference in both directions
- Similar to Crank Nicholson

3-POINT BACKWARD DIFFERENCE

- Space-march in ξ direction
- $2^{\text {nd }}$ Order
- Centered Difference in η
- 3-pt Backward Difference in ξ

Box Stencil

$$
X=X_{i+\frac{1}{2}}^{j+\frac{1}{2}}=\frac{1}{4}\left(X_{i}^{j}+X_{i}^{j+1}+X_{i+1}^{j}+X_{i+1}^{j+1}\right)
$$

$$
\begin{aligned}
& X^{\prime}=X_{i+\frac{1}{2}}^{j+\frac{1}{2}}=\frac{\left(X_{i+\frac{1}{2}}^{j+1}-X_{i+\frac{1}{2}}^{j}\right)}{\Delta \eta}=\frac{\left(\frac{1}{2}\left(X_{i+1}^{j+1}+X_{i}^{j+1}\right)-\frac{1}{2}\left(X_{i+1}^{j}+X_{i}^{j}\right)\right)}{\Delta \eta} \\
& \frac{\partial X}{\partial \xi}=\left.\frac{\partial X}{\partial \xi}\right|_{i+\frac{1}{2}} ^{j+\frac{1}{2}}=\frac{\left(X_{i+1}^{j+\frac{1}{2}}-X_{i}^{j+\frac{1}{2}}\right)}{\Delta \xi}=\frac{\left(\frac{1}{2}\left(X_{i+1}^{j+1}+X_{i+1}^{j}\right)-\frac{1}{2}\left(X_{i}^{j+1}+X_{i}^{j}\right)\right)}{\Delta \xi}
\end{aligned}
$$

3pt - Backward Stencil

$$
\begin{aligned}
& X=X_{i}^{j+\frac{1}{2}}=\frac{1}{2}\left(X_{i}^{j}+X_{i}^{j+1}\right) \\
& X^{\prime}=X_{i}^{\prime j+\frac{1}{2}}=\frac{\left(X_{i}^{j+1}-X_{i}^{j}\right)}{\Delta \eta}
\end{aligned}
$$

$$
\frac{\partial X}{\partial \xi}=\left.\frac{\partial X}{\partial \xi}\right|_{i} ^{j+\frac{1}{2}}=\frac{\left(\frac{3}{2} X_{i}^{j+\frac{1}{2}}-2 X_{i-1}^{j+\frac{1}{2}}+\frac{1}{2} X_{i-2}^{j+\frac{1}{2}}\right)}{2 \Delta \xi}=\frac{\left(\frac{3}{2}\left(X_{i}^{j+1}+X_{i}^{j}\right)-2\left(X_{i-1}^{j+1}+X_{i-1}^{j}\right)+\frac{1}{2}\left(X_{i-1}^{j+1}+X_{i-1}^{j}\right)\right)}{4 \Delta \xi}
$$

3pt - Backward Stencil

$$
X=X_{i}^{j+\frac{1}{2}}=\frac{1}{2}\left(X_{i}^{j}+X_{i}^{j+1}\right)
$$

$\begin{aligned} & \text { Finite difference } \\ & \text { approximations: }\end{aligned} X^{\prime}=X_{i}^{j+\frac{1}{2}}=\frac{\left(X_{i}^{j+1}-X_{i}^{j}\right)}{\Delta \eta}$

$$
\frac{\partial X}{\partial \xi}=\left.\frac{\partial X}{\partial \xi}\right|_{i} ^{j+\frac{1}{2}}=\frac{\left(\frac{3}{2} X_{i}^{j+\frac{1}{2}}-2 X_{i-1}^{j+\frac{1}{2}}+\frac{1}{2} X_{i-2}^{j+\frac{1}{2}}\right)}{2 \Delta \xi}=\frac{\left(\frac{3}{2}\left(X_{i}^{j+1}+X_{i}^{j}\right)-2\left(X_{i-1}^{j+1}+X_{i-1}^{j}\right)+\frac{1}{2}\left(X_{i-1}^{j+1}+X_{i-1}^{j}\right)\right)}{4 \Delta \xi}
$$

Analytical
Evaluations:

$$
\begin{array}{ll}
\begin{array}{l}
\xi=\xi_{i} \\
u_{e}=u_{e_{i}}=u_{e}\left(\xi_{i}\right)
\end{array} & \frac{\partial h_{e}}{\partial \xi}=\left.\frac{\partial h_{e}}{\partial \xi}\right|_{i}=\frac{\partial h_{e}}{\partial \xi}\left(\xi_{i}\right) \\
h_{e}=h_{e_{i}}=h_{e}\left(\xi_{i}\right) & \frac{\partial u_{e}}{\partial \xi}=\left.\frac{\partial u_{e}}{\partial \xi}\right|_{i}=\frac{\partial u_{e}}{\partial \xi}\left(\xi_{i}\right)
\end{array}
$$

Newton-Raphson Solver

- Necessary for Non-linear system
- 10 - Diagonal Sparse Matrix
- Analytically calculated jacobian
- Utilized MATLAB built in matrix solver
- Quadratic convergence
- Convergence criteria based on magnitude of max residual

Newton vs. MATLAB FSolve

- Compared the Newton-Raphson Method against MATLAB’s nonlinear solver
- Fsolve is a quasi-Newton method
- Assumed both solution methods had similar accuracies

	Newton-Raphson	MATLAB FSolve
Runtime	$6-7 \mathrm{sec}$	116 sec
$\#$ of Iterations	$3-4$	2
Implementation Complexity	~ 650 lines	~ 125 lines
$\#$ of Function Evaluations	525	243

(Solved for 30×30 system)

Selected Results

Error Analysis

- L2 Error Analysis of $\delta^{*}(\xi)$, displacement thickness

$$
\delta^{*}=\int_{0}^{\eta_{e}}\left(1-\frac{\rho}{\rho_{e}} U\right) \frac{\partial y}{\partial \eta} d \eta=\int_{0}^{\eta_{e}}\left(1-\frac{\rho}{\rho_{e}} U\right) \frac{H \sqrt{2 \xi}}{u_{e} \rho_{e}} d \eta
$$

- Compared to solution with fine resolution
- Roughly $2^{\text {nd }}$ order convergence, as expected
- Comparable performance of Box Scheme and 3pt scheme

Conclusions

- Newton-Raphson (in this case) is significantly preferable to FSolve
- Stability is not a significant concern for the backwards difference scheme
- Oscillations are not present in the box scheme
- There is no clear advantage to using the box scheme instead of the 3-pt backwards difference
- Further sampling of the solution space may be necessary to determine overall behavior of solution methods

Thank you

Questions?

Appendix

Analytical
Evaluations:

$$
\begin{gathered}
\xi=\xi_{i+\frac{1}{2}} \\
u_{e}=u_{e}=\frac{1}{2}=u_{e}\left(\xi_{i+\frac{1}{2}}\right) \\
h_{e}=h_{e_{i+\frac{1}{2}}}=h_{e}\left(\xi_{i+\frac{1}{2}}\right)
\end{gathered}
$$

$$
\frac{\partial h_{e}}{\partial \xi}=\left.\frac{\partial h_{e}}{\partial \xi}\right|_{i+\frac{1}{2}}=\frac{\partial h_{e}}{\partial \xi}\left(\xi_{i+\frac{1}{2}}\right)
$$

$$
\frac{\partial u_{e}}{\partial \xi}=\left.\frac{\partial u_{e}}{\partial \xi}\right|_{i+\frac{1}{2}}=\frac{\partial u_{e}}{\partial \xi}\left(\xi_{i+\frac{1}{2}}\right)
$$

Analytical Evaluations:

$$
\begin{array}{cl}
\xi=\xi_{i} & \frac{\partial h_{e}}{\partial \xi}=\left.\frac{\partial h_{e}}{\partial \xi}\right|_{i}=\frac{\partial h_{e}}{\partial \xi}\left(\xi_{i}\right) \\
u_{e}=u_{e_{i}}=u_{e}\left(\xi_{i}\right) & \frac{\partial u_{e}}{\partial \xi}=\left.\frac{\partial u_{e}}{\partial \xi}\right|_{i}=\frac{\partial u_{e}}{\partial \xi}\left(\xi_{i}\right)
\end{array}
$$

Chapman Rubesin factor

- $C=C(g)$
- $C_{i+\frac{1}{2}}^{j+\frac{1}{2}}=C\left(g_{i+\frac{1}{2}}^{j+\frac{1}{2}}\right)$
- $C_{i+\frac{1}{2}}^{j+\frac{1}{2}}=\frac{1}{4}\left[C\left(g_{i}^{j}\right)+C\left(g_{i+1}^{j}\right)+C\left(g_{i}^{j+1}\right)+C\left(g_{i+1}^{j+1}\right)\right]$

Similarity Equations

$\underline{2-C o u p l e d} 2^{\text {nd }}$ and $3^{\text {rd }}$ Order Diff. Eqns
$\underline{5 \text { - Coupled } 1^{\text {st }} \text { Order ODEs (Drela Notation) }}$

$$
\mathrm{F}^{\prime}=U
$$

$$
\begin{array}{cc}
\left(C f^{\prime \prime}\right)^{\prime}+f f^{\prime \prime}=0 & f=F \\
\left(\frac{C}{P r} g^{\prime}\right)^{\prime}+f g^{\prime}+C \frac{u_{e}^{2}}{h_{e}}\left(f^{\prime \prime}\right)^{2}=0 &
\end{array}
$$

$$
U^{\prime}=S
$$

$$
(C S)^{\prime}+F S=0
$$

$$
H^{\prime}=Q
$$

$$
\left(\frac{C}{P r} Q\right)^{\prime}+F Q+C \frac{u_{e}^{2}}{h_{e}}(S)^{2}=0
$$

Where $\phi^{\prime}=\frac{\partial \phi}{\partial \eta}$

