Challenges of modeling interceptors on a planing hull

Final Project for 2.29

Declan Gaylo, 2020 Page 1

Outline

- Background
 - Theory of planing
 - Interceptors
- Previous work Experimental testing
- Original Objective
- InterFoam VOF
- Challenges to modeling
- Conclusions

Background – Theory of planing

- Displacement Buoyant forces dominate Boyant Force $= \rho g \nabla$
- Planing Dynamic lift also significant

Lift force
$$\propto \frac{1}{2}\rho V^2 A_P$$

• Volumetric Froude Number

$$A_P \propto \nabla^{2/3}$$
 , $F_{\nabla} = \frac{V}{\sqrt{g^3 \sqrt{\nabla}}}$

Adapted from Savitsky (1964)

Background – Interceptors

Transitional speeds

$$F_{\nabla} \sim 2 \ to \ 3$$

- Large bow up trim
- Significant pressure drag
- Large pressure drag during transition to planing
- Interceptors
 - Create stagnation point
 - Lifts transom
 - Decrease resistance

Source: Zipwake.com

Previous Work – Experimental Tests

• Model:

LOA=	1.524m
Beam=	0.305m

- Interceptors and trim tabs
- F_{∇} 1.11 3.14
- Multiple deployments
- Longitudinal pressure forward of interceptor

Source: Gaylo Roske (2019)

 Model one speed and interceptor deployment. Validate with experimental data and compare results using different turbulence models.

- Choose largest deployment and mid-range speed $F_{\nabla}= 2.40 \quad (U \approx 4\frac{m}{s}) \quad L_{deployment} = 1.143mm \quad \tau = 0.8^{\circ}$
- From underside images calculated mean wetted length

$$Re_L = 4.7 \ X \ 10^6$$

InterFoam – Volume of Fluid method

- VOF track free surface using a continuity equation
- InterFoam implementation:
 - Very close to machine precision mass conservative
 - Iteration brings closer
- Machine precision VOF methods exist.
- *Ignored surface tension

$$\alpha(\vec{x}) = \begin{cases} 1, \vec{x} \in fluid \ 1\\ 0, \vec{x} \in fluid \ 2 \end{cases}$$

$$\int_{\Omega} \alpha(\vec{x}) dV / \int_{\Omega} dV \in [0, 1]$$
$$\rho(\vec{x}) = \alpha(\vec{x})\rho_1 + (1 - \alpha(\vec{x}))\rho_2$$
$$\mu(\vec{x}) = \alpha(\vec{x})\mu_1 + (1 - \alpha(\vec{x}))\mu_2$$
$$\frac{\partial\alpha}{\partial t} + \frac{\partial(\alpha u_j)}{\partial x_j} = 0$$

Declan Gaylo, 2020 Page 7

Challenges – Adverse pressure gradient

- Stagnation point near bow "Spray line"
- $k \epsilon$, accumulates epsilon
- $k \omega$, better
- Spray line needs grid refinement
 - location difficult to predict
- Switched to 2D simulation
 - Modeled forward top boundary condition as a symmetry plane.

Adapted from Savitsky (1964)

Challenges – Grid Resolution

- $\frac{L_{deployment}}{L_{hull}} \approx 1000$ Minimum Domain Length = $3 L_{hull}$
- For planing hulls, much larger domain lengths often needed.
- To model interceptor, layers near nearby would need aspect ratios near 1, unlike typical boundary layer cells.
- Difficult to maintain reasonable grid sizes, aspect ratios, and cell expansion rates.

Challenges – Wall and Interceptor refinement

• Using ITTC-1957 friction coefficient,

$$y^+(L_{deployment} = 1.143mm) \approx 180$$

- For wall functions, first cell center $30 < y^+ < 100$.
- Only three cells to capture interceptor deployment.
- To accurately model interceptor, would likely need to use near wall, $y^+ \approx 1$.

Challenges – Courant Restriction

• Transom usually fully ventilated

$$p_{front} \approx 0.3 \ \frac{1}{2} \rho V^2 + \rho g z \qquad p_{back} \approx 0$$

 $\Delta t \sim 10^{-6} s$

• Velocity near tip of interceptor O(V)

• For
$$\Delta x \sim L_{deployment}/3$$
 $V = 4 m/s$ and $CFL = 1$

Assuming $T_{converge} \sim 10 L_{Domain}/V$, need $O(10^7)$ timesteps

Conclusions

- Due primarily to stagnation points close to the free surface, planing creates a very computationally expensive problem.
- $k \epsilon$ is not stable in simulations with strong adverse pressure gradients, and can become unstable at stagnation points.
- Numerically modeling realistic model scale interceptor deployments adds significant computational cost.

Questions?

Declan Gaylo, 2020 Page 13