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Why is it important?
Facilitates a variety of innovations for characterizing high-dimensional data generated from experiments or observations

Why ML?
Neural network’s ability to learn complex non-linear functions provides unique benefits while interpreting underpinning physics  
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Variants
‣ Sparse regression and adaptive feature generation for the discovery of dynamical systems [Kulkarni et al. (2019)]
‣ Data-driven identification of parametric PDEs [Rudy et al. (2019)]

‣ Robust low-rank discovery of data-driven PDEs [Li et al. (2020)]
‣ Weak SINDy for PDEs [Messenger and Bortz (2020)]
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‣ Data-driven discovery of PDEs [Rudy et al. (2017)]
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PDENets

…

Loss Loss Loss

• Relates order of approximation of the spatial derivative 
with the order of sum rules of the filter.

• Able to learn these filters by imposing sparsity 
constraints from this relationship

Novelty Advantages
• Outperforms SINDy in terms of accuracy
• Feature libraries constructed are more memory 

efficient and cheaper to compute compared to 
SINDy

Pitfalls
• Lot of training data required to learn CNN 

filters and parameters of the Symbolic NN



ML adaptations of SINDy:
DL-PDE & DeepMOD



DL-PDE

Spatio-temporal

Dataset

Symbolic 
PDE

Feature library 
construction

Sparse 

regression



DLGA-PDE

Spatio-temporal

Dataset

Symbolic 
PDE

Feature library 
construction

Sparse 

regression



DLGA-PDE

Spatio-temporal

Dataset

Feature library 
construction

Genetic Algorithm +  

Regression

Crossover Mutation+

Symbolic 
PDE



DLGA-PDE

Spatio-temporal

Dataset

Feature library 
construction

Genetic Algorithm +  

Regression

Crossover Mutation+

Features = Modules

Symbolic 
PDE



DLGA-PDE

Spatio-temporal

Dataset

Feature library 
construction

Genetic Algorithm +  

Regression

Crossover Mutation+

Symbolic 
PDE

Combination of 
Modules = Genomes



DLGA-PDE

Spatio-temporal

Dataset

Feature library 
construction

Genetic Algorithm +  

Regression

Crossover Mutation+

Symbolic 
PDE

Optimization steps



DLGA-PDE
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Advantages
• Meta-data can be generated using learned NN - 

more data available for feature library 
construction & regression

• Automatic differentiation can be used to compute 
spatial derivatives instead of FD schemes

Pitfalls
• Prone to over-fitting noisy data with significant 

loss of accuracy
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• Learns NN parameters and sparse regression 
coefficients together

Novelty

• Training the NN effectively de-noises data and 
adjusts components of the feature library

Advantages
• Avoids over-fitting to noisy data
• Improved accuracy compared to DL-PDE
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Reinforcement Learning 

• Outputs mathematical expressions 
given a probability distribution

• Probability distribution is 
parameterized using a NN

• Contains a computational graph to 
encode expressions in a Domain-
specific language (DSL)



Reinforcement Learning 

• Outputs mathematical expressions 
given a probability distribution

• Probability distribution is 
parameterized using a NN

• Contains a computational graph to 
encode expressions in a Domain-
specific language (DSL)

Objective Average 
accuracy=

Similar approach:
‣ Automating turbulence modelling by multi-agent reinforcement learning [Novati et al. (2021)] 

‣ Use RL to find coefficients of turbulence models

‣ Rewards are computed by checking if statistical properties of DNS are preserved 
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