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BACKGROUND

= The Navier-Stokes equations rely on the continuum hypothesisl!], such that the
fluid intensive property functions are well behaved (often C )

®  Knudsen number Kn = A/L is the ratio of the mean free path of particle over
the characteristic length

®  measures the degree to which the state locally departs from equilibrium
= Kn = 0 = local equilibrium = Euler Equations

" Kn < 0.01 = sufficiently continuous = Navier-Stokes

®  For non-continuum flows and any Kn, need a new governing equation derived
from first principles: e.g. the Boltzmann Equation

[1] Pierre Lermusiaux, Recitation Navier-Stokes, MIT 2.29 (2021)



BOLTZMANN EQUATION

®  The Boltzmann Equation is a (6+1)—dimensional PDE that describes the
evolution of the single particle distribution function (pdf) f(x, c,t) of a gas

of of F of 1
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= |n the ballistic regime Kn > 1, Eq | approximately only depends on LHS

= |n the diffusive regime Kn < 1, Eq | is collision dominated and thus close to
local equilibrium

®  Chapman-Enskog derives the Euler and Navier-Stokes as the zeroth and first order
correction in a perturbative expansion f = f(o) + Kn f(l) + 0(Kn?)

" For 0.1 < Kn < 10 only the Boltzmann Equation (or Molecular Dynamics) is
appropriate
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[2] Adapted from Henning Struchtrup and Manuel Torrilhon, Higher-Order Effects in Rarefied Channel
Flows, 10.1103/PhysRevE.78.046301 (2008)



http://dx.doi.org/10.1103/PhysRevE.78.046301
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[3] Evan Massaro, Hermite Spectral Method for the Boltzmann Equation, MIT 18.336 (2020)
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[3] Evan Massaro, Hermite Spectral Method for the Boltzmann Equation, MIT 18.336 (2020)



NUMERICAL METHODS |

Two body collision integral
N = [ [ () F ) = F0)S (v2)] Bleost, g)dv.
R3 JS
= Evaluating this integral is difficult due to the high dimensionality and nonlinearity
= Fast spectral method is use to discretize space and the polar angles

" Flux reconstruction in space computed within the Lagrange polynomial basis
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[4] Tianbai Xiao, A Flux Reconstruction Kinetic Scheme for the Boltzmann Equation,
arxiv.org/pdf/2103.10371.pdf (2021)



NUMERICAL METHODS I

= Spectral representation
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®  Use singly diagonally implicit Runge—Kutta (SDIRK) for time integration

[4] Tianbai Xiao, A Flux Reconstruction Kinetic Scheme for the Boltzmann Equation,
arxiv.org/pdf/2103.10371.pdf (2021)
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[4] Code based in Kinetic.jl, https://xiactianbai.com/Kinetic.jl/dev (2021)



https://xiaotianbai.com/Kinetic.jl/dev

ERROR ANALYSIS

order =2
10°
-@- Density 35
10t b @- Velocity
2 -@- Temperature
= o ---- O(N?) 30
* 102 P S /
=
= s Qs
_ 810 r qE)
% S 20
T 107* -
3 15
—107° |
10° f AN 10
10°° 10*° 10+° 10%° 10%°
v
order =3
10°
S -@- Density
S -@- Velocity 25 L
2 N -@- Temperature
=2 | B ——-- O(N})
10 v
3
= O
_3 0}
b (U £
=
T 15 |
3
—10° |
N
\\ 10 -
~
N
1005 100 10+° 10%° 10%° 0 100 200 300 400 500



