Teaching a Fish to Swim

A hybrid approach for fast fish simulation

Fish gotta swim, bird's gotta fly...

I've gotta sit and wonder why, why, why...

(Beal 2015)

John Z. Zhang | johnz@mit.edu

1. Background on Fish Locomotion

Background on Fish Locomotion Differentiable Projective Dynamics

Background on Fish Locomotion
 Differentiable Projective Dynamics
 Hybrid Approach to FSI

- 1. Background on Fish Locomotion
- 2. Differentiable Projective Dynamics
- з. Hybrid Approach to FSI
- 4. COMSOL training set

- 1. Background on Fish Locomotion
- 2. Differentiable Projective Dynamics
- з. Hybrid Approach to FSI
- 4. COMSOL training set
- 5. Preliminary Results

- 1. Background on Fish Locomotion
- 2. Differentiable Projective Dynamics
- з. Hybrid Approach to FSI
- 4. COMSOL training set
- 5. Preliminary Results
- 6. Discussion

- 1. Background on Fish Locomotion
- 2. Differentiable Projective Dynamics
- з. Hybrid Approach to FSI
- 4. COMSOL training set
- 5. Preliminary Results
- 6. Discussion
- 7. Future Directions

Yellowfin Tuna ~2 m

Humpback Whale ~ 15 m

Schooling Fish

Tunabot 2019

Gifs from *Our Planet* | *High Seas*

(Curatolo & Teresi 2015)

$Y = a_1 X^5 + a_2 X^4 + a_3 X^3 + a_4 X^2 + a_5 X$

(Curatolo & Teresi 2015)

Resistive Force Theory (RFT) (1952)

Sir Geoffrey Ingram Taylor (1886-1975)

Elongated Body Theory (EBT) (1960)

Sir James Lighthill (1924-1998)

Resistive Force Theory (RFT) (1952)

Sir Geoffrey Ingram Taylor (1886-1975)

Viscosity Dominant

Elongated Body Theory (EBT) (1960)

Sir James Lighthill (1924-1998)

Resistive Force Theory (RFT) (1952)

Sir Geoffrey Ingram Taylor (1886-1975)

Viscosity Dominant

Elongated Body Theory (EBT) (1960)

Sir James Lighthill (1924-1998)

Inertia Dominant

Ming et al. 2018

Resistive Theory $F_s(s,t) = -rac{1}{2} ho H(s)C_Dv^2(s,t)$

Elongated Body (Reactive) Theory $F_a(s,t) = -\left(rac{\partial}{\partial t} + Urac{\partial}{\partial x}
ight) \left[V(s,t)m(s)
ight]$

Combined Theory

$$F_y(s,t) = C_a(s)F_a(s,t) + C_s(s)F_s(s,t)$$

How to simulate hydrodynamics **accurately** and **efficiently**?

How can the simulation be used for **computational design**?

Heuristic efficient, but inaccurate How to simulate hydrodynamics accurately and efficiently? How can the simulation be used for computational design?

Heuristic efficient, but inaccurate

How to simulate hydrodynamics accurately and efficiently? How can the simulation be used for computational design?

FSI

accurate, but inefficient

 $m \dot{v} = F_{
m T} - F_{
m D}$

 $m \dot{v} = F_{
m T} - F_{
m D}$ $0 = F_{
m T} - F_{
m D}$

 $m \dot{v} = F_{
m T} - F_{
m D}$

 $egin{aligned} 0 &= F_{\mathrm{T}} - F_{\mathrm{D}} \ 0 &= F_{\mathrm{T}} - rac{1}{2}
ho AC_{d}v_{\mathrm{max}}^{2} \end{aligned}$

 $m \dot{v} = F_{
m T} - F_{
m D}$

 $0=F_{
m T}-F_{
m D}$

 $0 = F_{\mathrm{T}} - \frac{1}{2}
ho A C_d v_{\mathrm{max}}^2$

$$v_{
m max} = \sqrt{rac{2F_{
m T}}{
ho AC_d}}$$

 $m \dot{v} = F_{
m T} - F_{
m D}$ $F_{
m T} = {\hat f}_t ({
m actuation, shape})$

 $0=F_{
m T}-F_{
m D}$

 $0 = F_{\mathrm{T}} - \frac{1}{2}
ho A C_d v_{\mathrm{max}}^2$

$$v_{
m max} = \sqrt{rac{2F_{
m T}}{
ho AC_d}}$$

 $egin{aligned} & m \dot{v} = F_{
m T} - F_{
m D} & F_{
m T} = {\hat f}_t (ext{actuation, shape}) \ & \ 0 = F_{
m T} - F_{
m D} & F_{
m D} = {\hat f}_d (ext{v, shape}) \end{aligned}$

 $0 = F_{\mathrm{T}} - \frac{1}{2}
ho A C_d v_{\mathrm{max}}^2$

$$v_{
m max} = \sqrt{rac{2F_{
m T}}{
ho AC_d}}$$

 $egin{aligned} & m \dot{v} = F_{
m T} - F_{
m D} & F_{
m T} = {\hat f}_t (ext{actuation, shape}) \ & \ 0 = F_{
m T} - F_{
m D} & F_{
m D} = {\hat f}_d (ext{v, shape}) \end{aligned}$

 $egin{aligned} 0 &= F_{\mathrm{T}} - rac{1}{2}
ho A C_d v_{\mathrm{max}}^2 \ v_{\mathrm{max}} &= \sqrt{rac{2F_{\mathrm{T}}}{
ho A C_d}} \end{aligned}$

given an initial design, can we optimize this further?

DiffPD: Existing framework for differentiable simulation of soft bodies from MIT CDFG

DiffAqua: A Differentiable Computational Design Pipeline for Soft Underwater Swimmers with Shape Interpolation

Submission ID 367

(Du 2021, Ma 202[†])

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ position velocity

m is the number of particles

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ position velocity

Discrete time: $t_1, t_2, ...$

m is the number of particles

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ position velocity

m is the number of particles

Discrete time: $t_1, t_2, ...$

state at
$$t_n$$
: $\begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ position velocity

state at
$$t_n$$
: $\begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$

m is the number of particles

External forces: $\mathbf{f}_{ ext{ext}} \in \mathbb{R}^{2m}$

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\mathbf{\dot{q}} \in \mathbb{R}^{2m}$
position velocity
Discrete time: $t_1, t_2, ...$
External forces: $\mathbf{f}_{\mathrm{ext}} \in \mathbb{R}^{2m}$
Internal forces: $\mathbf{f}_{\mathrm{int}} = -\nabla E_{\mathrm{int}}(\mathbf{q})$

$$m$$
 is the number of particles

state at
$$t_n$$
: $\begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ *m* is the number of particles
position velocity
Discrete time: $t_1, t_2, ...$ state at $t_n: \begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$
External forces: $\mathbf{f}_{\text{ext}} \in \mathbb{R}^{2m}$
Internal forces: $\mathbf{f}_{\text{int}} = -\nabla E_{\text{int}}(\mathbf{q})$
Muscle fibers: $E(\mathbf{q}) = \frac{w}{2} |(1-a)\mathbf{Fm}|^2$

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ m is the number of particlespositionvelocityDiscrete time: $t_1, t_2, ...$ state at $t_n: \begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$ External forces: $\mathbf{f}_{ext} \in \mathbb{R}^{2m}$ Internal forces: $\mathbf{f}_{int} = -\nabla E_{int}(\mathbf{q})$ Muscle fibers: $E(\mathbf{q}) = \frac{w}{2} |(1-a)\mathbf{Fm}|^2$ Implicit Euler:
Projective Dynamics in 2D

$$\mathbf{q} \in \mathbb{R}^{2m}$$
 $\dot{\mathbf{q}} \in \mathbb{R}^{2m}$ *m* is the number of particles
position velocity
Discrete time: $t_1, t_2, ...$ state at t_n : $\begin{pmatrix} \mathbf{q}_n \\ \dot{\mathbf{q}}_n \end{pmatrix}$
External forces: $\mathbf{f}_{\text{ext}} \in \mathbb{R}^{2m}$
Internal forces: $\mathbf{f}_{\text{int}} = -\nabla E_{\text{int}}(\mathbf{q})$
Muscle fibers: $E(\mathbf{q}) = \frac{w}{2} |(1-a)\mathbf{Fm}|^2$
Implicit Euler: $\mathbf{q}_{n+1} = \mathbf{q}_n + h\dot{\mathbf{q}}_{n+1}$
 $\dot{\mathbf{q}}_{n+1} = \dot{\mathbf{q}}_n + h\mathbf{M}^{-1}[\mathbf{f}_{\text{int}}(\mathbf{q}_{n+1}) + \mathbf{f}_{\text{ext}}]$
(Kavan PBA 2014)

Projective Dynamics in 2D (cont'd) Must solve nonlinear system of equations, equivalent to optimization problem.

$$\min_{\mathbf{q}_{i+1}} rac{1}{2h^2} |\mathbf{M}^rac{1}{2}(\mathbf{q}_{i+1}-\mathbf{y})|^2 + E_{ ext{int}}(\mathbf{q}_{i+1})$$

Projective Dynamics in 2D (cont'd) Must solve nonlinear system of equations, equivalent to optimization problem.

$$\min_{\mathbf{q}_{i+1}} rac{1}{2h^2} |\mathbf{M}^rac{1}{2} (\mathbf{q}_{i+1} - \mathbf{y})|^2 + E_{ ext{int}} (\mathbf{q}_{i+1})$$

Using Newton-Raphson

$$\mathbf{A}_{\mathrm{N}} = rac{1}{h^2} \mathbf{M} +
abla^2 E_{\mathrm{int}}(\mathbf{q}_{i+1})$$

Must solve nonlinear system of equations,

equivalent to optimization problem.

$$\min_{\mathbf{q}_{i+1}} rac{1}{2h^2} |\mathbf{M}^rac{1}{2} (\mathbf{q}_{i+1} - \mathbf{y})|^2 + E_{ ext{int}} (\mathbf{q}_{i+1})$$

Using Newton-Raphson

$$\mathbf{A}_{\mathrm{N}} = rac{1}{h^2} \mathbf{M} +
abla^2 E_{\mathrm{int}}(\mathbf{q}_{i+1})$$

In Projective Dynamics, we decouple nonlinear material model from linear systems of equations

Minimize by alternating between a local and **global step**

Must solve nonlinear system of equations,

equivalent to optimization problem.

$$\min_{\mathbf{q}_{i+1}} rac{1}{2h^2} |\mathbf{M}^rac{1}{2} (\mathbf{q}_{i+1} - \mathbf{y})|^2 + E_{ ext{int}} (\mathbf{q}_{i+1})$$

Using Newton-Raphson

$$\mathbf{A}_{\mathrm{N}} = rac{1}{h^2} \mathbf{M} +
abla^2 E_{\mathrm{int}}(\mathbf{q}_{i+1})$$

In Projective Dynamics, we decouple nonlinear material model from linear systems of equations

Minimize by alternating between a local and **global step**

$$\mathbf{A} = rac{1}{h^2} \mathbf{M} + \sum_e w_e \mathbf{G}_e^ op \mathbf{G}_e^ op \mathbf{G}_e$$

Must solve nonlinear system of equations,

equivalent to optimization problem.

$$\min_{\mathbf{q}_{i+1}} rac{1}{2h^2} |\mathbf{M}^{rac{1}{2}}(\mathbf{q}_{i+1}-\mathbf{y})|^2 + E_{ ext{int}}(\mathbf{q}_{i+1})$$

Using Newton-Raphson

$$\mathbf{A}_{\mathrm{N}} = rac{1}{h^2} \mathbf{M} +
abla^2 E_{\mathrm{int}}(\mathbf{q}_{i+1})$$

In Projective Dynamics, we decouple nonlinear material model from linear systems of equations

Minimize by alternating between a local and **global step**

$$\mathbf{A} = rac{1}{h^2} \mathbf{M} + \sum_e w_e \mathbf{G}_e^ op \mathbf{G}_e^ op \mathbf{G}_e$$

 $\mathbf{Aq} = \mathbf{b}$ Prefactor! **b** changes on each time step

$egin{aligned} \mathbf{f}_{ ext{drag}} &\propto C_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} \ \mathbf{f}_{ ext{thrust}} &\propto C_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \ \Phi &= rac{\pi}{2} - \cos^{-1}(\mathbf{n}\cdot\mathbf{v}_{ ext{rel}}) \end{aligned}$

 $\mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|}$

$egin{aligned} \mathbf{f}_{ ext{drag}} &= rac{1}{2} ho AC_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} & \mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|} \ \mathbf{f}_{ ext{thrust}} &= -rac{1}{2} ho AC_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \end{aligned}$

$egin{aligned} \mathbf{f}_{ ext{drag}} &= rac{1}{2} ho AC_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} & \mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|} \ \mathbf{f}_{ ext{thrust}} &= -rac{1}{2} ho AC_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \end{aligned}$

$egin{aligned} \mathbf{f}_{ ext{drag}} &= rac{1}{2} ho AC_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} & \mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|} \ \mathbf{f}_{ ext{thrust}} &= -rac{1}{2} ho AC_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \end{aligned}$

$$egin{aligned} \mathbf{f}_{ ext{drag}} &= rac{1}{2}
ho AC_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} & \mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|} \ \mathbf{f}_{ ext{thrust}} &= -rac{1}{2}
ho AC_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \end{aligned}$$

$$egin{aligned} \mathbf{f}_{ ext{drag}} &= rac{1}{2}
ho AC_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d} & \mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|} \ \mathbf{f}_{ ext{thrust}} &= -rac{1}{2}
ho AC_t(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{n} \end{aligned}$$

$$egin{aligned} \mathbf{v}_{ ext{rel}} &= \mathbf{v}_{ ext{water}} - rac{1}{3}(\mathbf{v}_0 + \mathbf{v}_1 + \mathbf{v}_2) \ \Phi &= rac{\pi}{2} - \cos^{-1}(\mathbf{n}\cdot\mathbf{v}_{ ext{rel}}) \end{aligned}$$

 $\mathbf{f}_{ ext{drag}} = rac{1}{2}
ho A C_d(\Phi) |\mathbf{v}_{ ext{rel}}|^2 \mathbf{d}$ $\mathbf{d} = rac{\mathbf{v}_{ ext{rel}}}{|\mathbf{v}_{ ext{rel}}|}$ $\mathbf{f}_{\mathrm{thrust}} = -rac{1}{2}
ho A C_t(\Phi) |\mathbf{v}_{\mathrm{rel}}|^2 \mathbf{n}$

Proposed **Solution** Differentiable $\mathbf{P}\mathbf{q}_{n+1}, \dot{\mathbf{q}}_{n+1}$ $\mathbf{q}_n, \dot{\mathbf{q}}_n$ Simulation \mathbf{a}_n solid $\mathbf{f}_{\text{ext}} \approx \text{hydrodynamics}$ fluid $\int_{\partial\Omega_s} \mathbf{t} dA$ $\mathbf{p}_n, \mathbf{u}_n, \mathbf{v}_n$ $\rightarrow \mathbf{p}_{n+1}, \mathbf{u}_{n+1}, \mathbf{v}_{n+1}$ \mathbf{b}_n UNet $\mathbf{u}_{n+1}, \mathbf{v}_{n+1}$ \mathbf{A} on $\partial \Omega$

Proposed Solution Differentiable $\mathbf{P}^{\mathbf{q}_{n+1}}, \mathbf{q}_{n+1}$ $\mathbf{q}_n, \dot{\mathbf{q}}_n$. Simulation \mathbf{a}_n solid $\mathbf{f}_{\text{ext}} \approx \text{hydrodynamics}$ fluid $\int_{\partial\Omega_s} \mathbf{t} dA$ $\mathbf{p}_n, \mathbf{u}_n, \mathbf{v}_n$ – $ightarrow \mathbf{p}_{n+1}, \mathbf{u}_{n+1}, \mathbf{v}_{n+1}$ UNet \mathbf{b}_n . $\mathbf{u}_{n+1}, \mathbf{v}_{n+1}$ \bigstar on $\partial \Omega$ $\mathbf{f}_{\text{pressure}} = \int_{\partial \Omega} p \mathbf{n} \, dl$ $\mathbf{f}_{ ext{viscous}} = \int_{\partial\Omega} \mu \mathbf{n} imes \omega \, dl \quad \omega = abla imes \mathbf{u}$

10.1

Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates

Li-Wei Chen, Berkay Alp Cakal, Xiangyu Hu, Nils Thuerey

September 2020

Name	# of flow fields	Re	NN models
Dataset-1	2500	1	small, medium & large
Dataset-40	2500	40	small, medium & large
Dataset-Range	3028	0.5 - 42.5	large

Table 1: Three datasets for training the neural network models.

Numerical investigation of minimum drag in laminar flow using deep learning surr

Li-Wei Chen, Berkay Alp Cakal, Xiangyu Hu, Nils T

September 2020

Name	# of flow fields	Re	NN models
Dataset-1	2500	1	small, medium & large
Dataset-40	2500	40	small, medium & large
Dataset-Range	3028	0.5 - 42.5	large

Table 1: Three datasets for training the neural network models.

Numerical investigation of minimum drag .06 0.92 0.5 0.5 0.78 in laminar flow using deep learning surr 0.64 > 0.0 0.50 0.36 0.22 -0.5 -0.50.08 -0.06 Li-Wei Chen, Berkay Alp Cakal, Xiangyu Hu, Nils T -1.0 -0.20 -1.0 -0.50.0 0.5 1.0 -0.50.0 0.5 1.0 (a) OpenFOAM (b) Small-scale neural network September 2020 1.0 10 1.06 0.92 0.5 0.5 0.78 0.64 > 0.0 0 50 0.36 0.22 -0.5 -0.5 0.08 -0.06 -1.0 + -1.0 $^{-1.0}_{-1.0}$ -0.20 -0.5 0.0 0.5 1.0 -0.50.0 0.5 1.0 (c) Medium-scale neural network (d) Large-scale neural network Katemine et al. 2005 Small-scale NN 2 Medium-scale NN Large-scale NN OpenFOAM Medium-scale NN, Bezier 1 y/r₀ 0 Name # of flowfields Re NN models Dataset-1 2500small, medium & l $^{-1}$ 1 Dataset-40 40 2500small, medium & l Dataset-Range 3028 0.5 - 42.5large -2

-2

-1

0

 x/r_0

1

Table 1: Three datasets for training the neural network mode

2

(Ronneberger 2015)

COMSOL FSI Modified from (Curatolo & Teresi 2015)

0.8

0.6

0.4

0.2

0

0.5

-0.5

Modified from (Curatolo & Teresi 2015) **Post Processed** training data in MATLAB 128 x 128 image

COMSOL FSI

sequence

11 . 1

Fluid

Fluid

Fluid

Fluid

$$abla \cdot \mathbf{u} = 0$$

Structure Boundary Condition

$$\mathbf{t} = -\mathbf{n} \cdot (-p\mathbf{I} + \underbrace{ au}_{\eta
abla^2 \mathbf{u}})$$

Preliminary Results

after 200 epochs

The End Goal

Parameter	COMSOL FSI	DiffPD
dt	0.01	0.01
frames	200	200
machine	local desktop	google cloud platform
run time	> 2 hours	5.4 seconds

Parameter	COMSOL FSI	DiffPD
dt	0.01	0.01
frames	200	200
machine	local desktop	google cloud platform
run time	> 2 hours	5.4 seconds

Use NN as a more sophisticated differentiable look up table.

Parameter	COMSOL FSI	DiffPD
dt	0.01	0.01
frames	200	200
machine	local desktop	google cloud platform
run time	> 2 hours	5.4 seconds

Use NN as a more sophisticated differentiable look up table.

Training takes time, but afterwards simulation will run fast.

Parameter	COMSOL FSI	DiffPD
dt	0.01	0.01
frames	200	200
machine	local desktop	google cloud platform
run time	> 2 hours	5.4 seconds

Use NN as a more sophisticated differentiable look up table.

Training takes time, but afterwards simulation will run fast.

Use the hybrid simulator for control, design optimization, fun, etc.

Future Directions

- Find a big computer and train with more data
- Integrate NN output around fish body and use output of network as surrogate hydrodynamics
- Physics-informed Neural Network similar to Raissi 2018 and Wandel 2021
- Consider using just the vorticity instead of the velocities for 2D
- Extend to 3D
- Compare with physical experiments

So long and thanks for all the fish!

Many thanks to Aaron, Courbin, Lisa, Pierre!