

A mature tree can transpire up to ~300 to 400 L of water a day!

Typical flow in the xylem

Water moves up the xylem through perforations (pits) between tracheids

Vulnerability to embolism

Vulnerability to embolism

Vulnerability to embolism

- An embolism (air bubble) is introduced
- Since the water is under tension, the embolism expands
- Air seeds through the perforations into neighboring tracheids
- The embolism spreads through the entire xylem network and leads to total loss of hydraulic conductivity

Protection against embolism

 If the embolism can be contained within a single tracheid, the water column remains intact

Protection against embolism

The margo-torus pit membrane

The margo-torus pit membrane

Flexible, highly permeable "margo"

Rigid, impermeable "torus"

Schoonmaker et al. *Plant Cell Env.* (2010) Scale bars: 1 µm

Protection against embolism

Protection against embolism

Hacke and Jansen. New Phyt. (2009) Scale bars: 1 μm

Objectives

- Characterize typical flow through the pit + small membrane deflections
- 2. Examine mechanisms of aspiration

Simplified pit geometry

- 2D (radially symmetric in 3D)
- Explicitly defined torus boundary
- Thin, massless margo (including the margo's resistance would increase △P
- Set inlet velocity u_{in} ~ mm/s
 (ahead of expanding bubble front)
- Open outlet

Simplified pit geometry

- 2D (radially symmetric in 3D)
- Explicitly defined torus boundary
- Thin, massless margo (including the margo's resistance would increase ∠P
- Set inlet velocity u_{in} ~ mm/s
 (ahead of expanding bubble front)
- Open outlet

- F_m modeled as a spring force parametrized by the Young's modulus E (~50 GPa)
- F_t calculated through integration of pressure around the torus
- $\bullet \quad F = F_t + F_m$
- Expect an equilibrium deflection
 Δx where the forces are balanced

Flow & simulation properties

- Low Reynolds number
- Modified 2.29 FV code
- Torus deflection determined by $F_t + F_m$
- Mesh redefined after deflection update

Typical flow through the pit

$$\Delta P = P - \bar{P}_{\rm in}$$

Stability of deflection at low pressures

Stability of deflection at low pressures

Stability of deflection at low pressures

Aspiration is a biphasic process

Aspiration is a biphasic process

Comments

Aspiration (ie closure) can precede the air-water interface, in contrast with angiosperm "simple" pit membranes, which function by capillarity

Gymnosperm "Margo-torus"

Domec et al. *Am. J. Bot.* (2006) Scale bars: 10 μm

Angiosperm "Simple"

Choat et al. New Phyt. (2008)