2.29: Analysis of alternative spacer designs in ED desal systems Rashed Al-Rashed

TANK

RINI

ANK

Electrodialysis (ED) applies voltage to extract salt

Flow spacers guide flow between ED membranes

Novel spacer design could be the source of issues

Potential issues with new design:

- Desal performance suggests potential stagnant/dead zones along flow path
- Measured pressure drop is higher than desired

Project objectives using CFD:

- Investigate dead zones along flow path at different flowrates (2-5mL/s)
- Compare pressure drop to equiv. straight path

CFD analysis was set up and verified across various meshes/modelling conditions

Flow path length-width-height: 450 x 20 x 0.3 mm

Velocity profile shows significant stagnation around flow path bends

Similar behavior is observed at lower flowrates

Flow through "unwrapped" channel was modelled to build confidence in simulation and compare ΔP

VS.

Summarized findings: -Curved path increases ΔP by ~10x (0.2 to 2 Pa) -unwrapped channel agrees w/ analytical sol'n Important caveat: 2D flow neglects the the main source of ΔP (2 Pa vs ~2 KPa)

Flow path length-width-height: 450 x 20 x 0.3 mm

Adding a turbulence promoter ("mesh") along path improves desal performance, with some caveats

Mesh inclusion may help with dead zones but adds to modeling complexity

How can these findings influence future designs?

