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Motivation

High performance optical systems operated in the field are size, weight,
and power constrained
o Detectors and optics are often temperature sensitive

o Limited availability of temperature control, subject to potentially harsh
environments, sealed enclosure limits airflow

> Heat generating components stored in same enclosure as sensor and optics

Light often passes through air on its way to the sensor
> Index of Refraction (IoR) of air varies with temperature and pressure

o Effects on pointing and phase

Degradation of optical performance from free-space air lIoR gradients is
of interest Source: FLIR
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Optical “Disturbance” Metric

Optical Path Length (OPL) can be used to evaluate disturbance
° Integrate Index of Refraction along path length of light “ray” OPL = jn ds
Cc

o Evaluate RSS of OPL across optic pupil

Index of Refraction, n, formula for dry air
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o Where n is index of refraction, P is pressure in mbar, T is temperature in Kelvin, and s is wavenumber of
transmitted light of interest

[1] Applied Optics vol. 6 No. 1 1967 p51-59 JC Owens



Application
buoyantBoussinesgPimpleFoam

Description
Transient solver for buoyant, turbulent flow of incompressible fluids

Uses the Boussinesq approximation:
f

rho_{k} = 1 - beta(T - T_{ref})
\f]
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Notional optical sensor housed in small enclosure with support electronics
o Simplified for mesh representation

© 0.5x0.4 x 0.4 meters

Camera

T
600.00

Solved in OpenFOAM Free Space
° buoyantBoussinesqPimpleFoam

o Implicit, RANS
° Virtual machine on laptop
o Simulate 20s of time, with At = 0.05s
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Fine Mesh Results

Rising heat stream waves back
and forth somewhat

> Not completely steady
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Optical Comparison of Solutions

Coarse grid is likely insufficient
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Future Work

Utilize GUI meshing tools to increase complexity of geometry
o Text editing blockMesh is very time consuming!
° Include internal optical components, heat exchangers, varying environmental loads

Implementing an LES scheme may capture important structures not captured with RANS

Automate ray optical path length data capture
o Quickly sample more than 5 rays

Apply to more complex flows, such as hypersonic boundary layer

Error analysis



