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Introduction – Aerodynamic Shape Optimization

• Objective: Vary shape design variables subject to 
constraints to optimize aerodynamic performance

• Research Developments:

• Airfoil optimization, Hicks et al. 1974

• Aircraft wing design optimization, Hicks and 
Henne 1978

• Transonic airfoil optimization using adjoint, 
Jameson 1988

• Aircraft configuration using grid perturbation, 
Reuther 1999 Figure 1. Optimization framework used in Hicks 

and Henne 1978 
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Gradient-based optimization

• Require values of objective and constraint 
functions, and gradients with respect to design 
variables

Methods for computing derivatives (Peter and 
Dwight 2010)

• Finite difference

• Complex step

• Analytic Methods

• Direct Method

• Adjoint Method

Figure 2. Schematic of gradient based aerodynamic optimization
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Analytic Methods: Direct and Adjoint

• Quantity of interest f, independent 
variables x, state variables y

• Direct Method

• Computational cost 
proportional to number of 
design variables

• Adjoint Method

• Computational cost 
proportional to number of 
quantities of interest
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Adjoint Method in Fluid Mechanics

• Define cost function I, flow-field variables w, 
and physical location of boundary F 
(Jameson 2003)

• Independent of number of design variables

Research Development:

• Pioneering paper, Pironneau 1974

• Discrete adjoint using automatic 
differentiation, Mader et al. 2008

• Automatic differentiation adjoint of RANS 
equations, Lyu et al. 2013
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Numerical Example: Aircraft Wing Optimization (Lyu et al 2014)

Problem: Lift-constrained drag minimization of NASA Common Research Model Wing

Geometric Parameterization: Free-form deformation approach. Shape design variables are 
the displacement of FFD control points in z-direction.

Mesh Perturbation: Algebraic grid generation.

Flow Equations: Steady RANS with Spalart-Allmaras turbulence model.

CFD Solver: Cell centered finite-volume. Main flow solved using Runge-Kutta algorithm, along 
with geometric multigrid. Spalart-Allmaras turbulence equation iterated with ADI method.

Optimization Algorithm: Gradient based optimizer with adjoint gradient evaluations.

Figure 3. FFD volume and 720 geometric control points 
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Numerical Example: Wing Design Benchmark

• Baseline transonic wing geometry developed by NASA

• Under nominal flight condition, M = 0.85, Re = 5 x 106

• Mesh generation: Hyperbolic mesh-generator marched out from surface using O-grid 
topology to a far field 25 times the span. Using multilevel optimization acceleration method.

• Full optimization problem:
𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝐶𝐷

𝒘. 𝒓. 𝒕 𝛼, 𝑧

𝒔. 𝒕. 𝐶𝐿= 0.5
𝐶𝑀𝑦

≥ −0.17

𝑡 ≥ 0.25𝑡𝑏𝑎𝑠𝑒
𝑉 ≥ 𝑉𝑏𝑎𝑠𝑒

∆𝑧𝑇𝐸,𝑢𝑝𝑝𝑒𝑟 = ∆𝑧𝑇𝐸,𝑙𝑜𝑤𝑒𝑟
∆ 𝑧𝐿𝐸,𝑢𝑝𝑝𝑒𝑟,𝑟𝑜𝑜𝑡 = ∆𝑧𝐿𝐸,𝑙𝑜𝑤𝑒𝑟,𝑟𝑜𝑜𝑡
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Numerical Example: Wing Design Benchmark

• 8.5% reduction in drag

• Shock elimination in optimized wing

Figure 4. Baseline and optimized wing results. (Lyu et al 2014)
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Numerical Example: Wing Design Benchmark

• Mesh convergence study to determine 
resolution accuracy of mesh

• Three mesh sizes: L2 (451,000 cells), L1 
(3.6 million cells), L0 (28.8 million cells)

• Computed zero-grid spacing drag using 
Richardson’s extrapolation

• Multilevel optimization: Perform optimization 
on coarser grid until optimality achieved, use 
optimal design variables on finer grid

Figure 5. Mesh-convergence study 

Grid Level Iterations Procs. Time (hours) Total proc-hr

L2 638 64 29.3 1,875.2

L1 89 256 20.2 5,171.2

L0 18 1,248 11.1 13,852.8

Table 1. Number of iterations and computational time spent on each grid level to reach optimal design.
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Conclusions

• Gradient-based optimization using the adjoint method is efficient when the number of 
design variables exceeds number of quantities of interest

• Applications in airfoils, aircraft wings, aircraft configurations, wind turbine blades, 
hydrofoils

• Research Topics: Aerodynamic Design optimization via Machine Learning, Aerostructural 
optimization, Hybrid algorithms, Aeropropulsive design optimization of Boundary Layer 
Ingestion
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