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Diesel injection, ignition, and fuel air mixing

1. Fuel spray phenomena

2. Spontaneous ignition

3. Effects of fuel jet and charge motion on mixing-
controlled combustion

4. Fuel injection hardware

5. Challenges for diesel combustion

DIESEL FUEL INJECTION

The fuel spray serves multiple purposes:
• Atomization
• Fuel distribution
• Fuel/air mixing

Typical Diesel fuel injector
• Injection pressure: 1000 to 2200 bar
• 5 to 20 holes at ~ 0.12 - 0.2 mm diameter
• Drop size 0.1 to 10 m
• For best torque, injection starts at about 20o BTDC

Injection strategies for NOx control
• Late injection  (inj. starts at around TDC)
• Other control strategies:

Pilot and multiple injections, rate shaping, water emulsion



2

Diesel Fuel Injection System

(A Major cost of the diesel engine)
• Performs fuel metering

• Provides high injection pressure

• Distributes fuel effectively

– Spray patterns, atomization etc.

• Provides fluid kinetic energy for charge mixing

Typical systems:
• Pump and distribution system (100 to 1500 bar)

• Common rail system (1000 to 1800 bar)

• Hydraulic pressure amplification

• Unit injectors (1000 to 2200 bar)

• Piezoelectric injectors (1800 bar)

• Electronically controlled

EXAMPLE OF DIESEL INJECTION

(Hino K13C, 6 cylinder, 12.9 L turbo-charged diesel 
engine, rated at 294KW@2000 rpm)

• Injection pressure = 1400 bar; duration = 40oCA

• BSFC 200 g/KW-hr

• Fuel delivered per cylinder per injection at rated 
condition

– 0.163 gm ~0.21 cc (210 mm3)

• Averaged fuel flow rate during injection

– 64 mm3/ms

• 8 nozzle holes, at 0.2 mm diameter

– Average exit velocity at nozzle ~253 m/s
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Typical physical quantities in nozzle flow

• Diesel fuel @ 100oC

– s.g. ~ 0.78, ~5x10-4 N-s/m2

• Nozzle diameter ~0.2 mm

• L/d ~ 5 to 10

• Reynolds No. ~ 105 (turbulent)

• Pressure drop in nozzle

~30 bar << driving pressure      
(~1000 bar)

• Injection velocity
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Fuel Atomization Process

• Liquid break up governed by balance between 
aerodynamic force and  surface tension

• Critical Webber number: Wb,critical ~ 30; diesel fuel 
surface tension ~ 2.5x10-2 N/m

• Typical Wb at nozzle outlet > Wb,critical; fuel shattered 
into droplets within ~ one nozzle diameter

• Droplet size distribution in spray depends on further 
droplet breakup, coalescence and evaporation
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Droplet size distribution

Size distribution:
f(D)dD = probability of finding 

particle with diameter in 
the range of (D, D + dD)
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Fig. 10.28 Droplet size distribution measured well downstream; numbers on the curves are 
radial distances from jet axis.  Nozzle opening pressure at 10 MPa; injection into air at 11 bar.
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Droplet Behavior in Spray

• Small drops (~ micron size) follow gas stream; 
large ones do not
– Relaxation time  d2

• Evaporation time  d2

– Evaporation time small once charge is ignited

• Spray angle depends on nozzle geometry and 
gas density : tan(/2)  gasliquid

• Spray penetration depends on injection 
momentum, mixing with charge air, and droplet 
evaporation

Spray Penetration: vapor and liquid (Fig. 10-20)

Shadowgraph image 
showing both liquid 
and vapor penetration

Back-lit image 
showing liquid-
containing core
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Auto-ignition Process

PHYSICAL PROCESSES  (Physical Delay)
 Drop atomization
 Evaporation
 Fuel vapor/air mixing

CHEMICAL PROCESSES (Chemical Delay)
 Chain initiation
 Chain propagation
 Branching reactions

CETANE IMPROVERS
 Alkyl Nitrates

– 0.5% by volume increases CN by ~10

Mixture cooling from heat of vaporization

10-2 10-1 1 
, Fuel equilvalence ratio of mixture
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Adiabatic, constant pressure evaporation 
Dodecane in air 
Initial condition:
Air at 800 K, 80 bar
Liq. dodecane at 350K, 80 bar 



7

Ignition Mechanism: similar to SI engine knock

CHAIN BRANCHING EXPLOSION
Chemical reactions lead to increasing number of radicals, 
which leads to rapidly increasing reaction rates
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Cetane Rating

(Procedure is similar to Octane Rating for SI Engine; for details, 
see10.6.2 of text)

Primary Reference Fuels:
 Normal cetane (C16H34): CN = 100
 Hepta-Methyl-Nonane (HMN; C16H34): CN = 15

(2-2-4-4-6-8-8 Heptamethylnonane)

Rating:
 Operate CFR engine at 900 rpm with fuel
 Injection at 13o BTC
 Adjust compression ratio until ignition at TDC
 Replace fuel by reference fuel blend and change blend proportion to 

get same ignition point
 CN = % n-cetane + 0.15 x % HMN
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Ignition Delay

Ignition delays measured in a 
small four-stroke cycle DI 
diesel engine with rc=16.5, as a 
function of load at 1980 rpm, at 
various cetane number

(Fig. 10-36)

Fuel effects on Cetane Number (Fig. 10-40)

Adding less stable species

Adding 
more stable 
species
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• Difficulty: do not know local conditions (species concentration 
and temperature) to apply kinetics information

Two practical approaches:

• Use an “instantaneous” delay expression

(T,P) = P-nexp(-EA/ T)

and solve ignition delay (id) from

• Use empirical correlation of id based on T, P at an appropriate  
charge condition; e.g. Eq. (10.37 of text)

Ignition Delay Calculations
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Diesel Engine Combustion
Air Fuel Mixing Process

• Importance of air utilization
– Smoke-limit A/F ~ 20

• Fuel jet momentum / wall interaction has a larger influence 
on the early part of the combustion process

• Charge motion impacts the later part of the combustion 
process (after end-of-injection)

CHARGE MOTION CONTROL

• Intake created motion: swirl, etc.
– Not effective for low speed large engine

• Piston created motion - squish
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Interaction of fuel jet and the chamber wall

Sketches of outer vapor boundary 
of diesel fuel spray from 12 
successive frames (0.14 ms apart) 
of high-speed shadowgraph 
movie.  Injection pressure at 60 
MPa.

Fig. 10-21

Interaction of fuel jet with air swirl

Schematic of fuel jet –
air swirl interaction; 
is the fuel equivalence 
ratio distribution

Fig. 10-22
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Rate of Heat Release in Diesel Combustion
(Fig. 10.8 of Text)

Part of combustion affected 
most by the charge motion

DIESEL FUEL INJECTION HARDWARE

• High pressure system
– precision parts for flow control

• Fast action
– high power movements

Expensive system
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FUEL METERING AND INJECTION SYSTEM -
CONCEPT

Plunger

Fuel in Fuel spill

Fuel injection

Process:

• Fill

• Pressurize

• Inject

• Spill

Fuel Delivery Control

From Diesel Fuel 
Injection, Robert 
Bosch GmbH, 
1994
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Fuel Rack and In-line 
Pump

From Diesel Fuel Injection, 
Robert Bosch GmbH, 1994

Distributor pump

Diesel Injector
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Electronic Unit Injector

SAE Paper 891001

Injection pressure

• Positive displacement injection system
– Injection pressure adjusted to accommodate plunger 

motion

– Injection pressure  rpm2

• Injection characteristics speed dependent
– Injection pressure too high at high rpm

– Injection pressure too low at low rpm
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Common Rail Fuel Injection System

SAE Paper 1999-01-0833

Common Rail Injector

From Bosch: Diesel Engine Management

Nozzle opening speed controlled by the 
flow rate difference between the Bleed (6) 
and Feed (7) orifices
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Caterpillar Hydraulic Electronic Unit Injector (HEUI)

SAE Papers 930270, 930271

Fuel line: 200kPa; Low pressure oil: 300 kPa;
High pressure oil: up to 23 MPa;
Intensifier area ratio 7:1
Injection pressure up to 150 MPa

Piezoelectric injectors

Nozzle module

Control valve

Coupling module

Piezo actuator module

• For both diesel and GDI applications

• Up to 180 MPa injection pressure

• 5 injections per cycle 

• In vehicle production already

• Suppliers: Bosch; Delphi; Denso; Siemens; …
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Split Injection (SAE Paper 940668)

1600 rpm, 184 KPa manifold 
pressure, overall fuel 
equivalence ratio = 0.45;

50-50,3 stands for 50/50% 
split of fuel injection, with 3o

CA spacing 

CHALLENGES IN DIESEL COMBUSTION

Heavy Duty Diesel Engines
• NOx emission

• Particulate emission

• Power density

• Noise

High Speed Passenger Car Diesel Engines
• All of the above, plus

– Fast burn rate
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Cavitation in Injection Nozzle

• Cavitation happens when local pressure is 
lower than the fluid vapor pressure

• Effects
– Affects the spray angle

– Damage to the nozzle passage

• Factors affecting cavitation
– Combustion chamber pressure

– Local streamline curvature within the nozzle

Flow process that leads to cavitation

Combustion chamber pressure
Pc

further friction drop Pf

Bernoulli drop
Pb = ½ f (u1

2-u2
2)

= ½ f u2
2 [ (A2/A1)2-1]

 Pinj [ (A2/A1)2-1]pressure

u1 u2

Flow separation
(recirculation region)

Flow reattachment

Pmin

 Pc-Pb-Pf

Cavitation 
occurs if 

Pmin  fuel 
saturation 
pressure 


