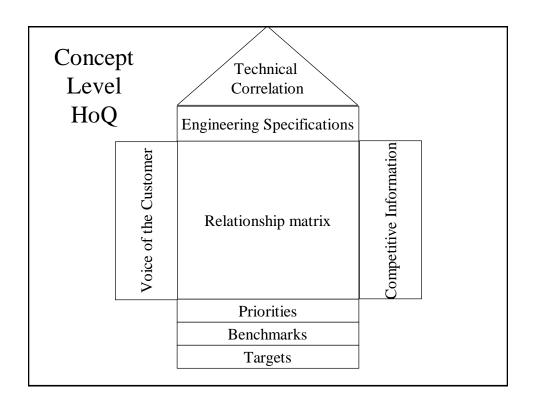
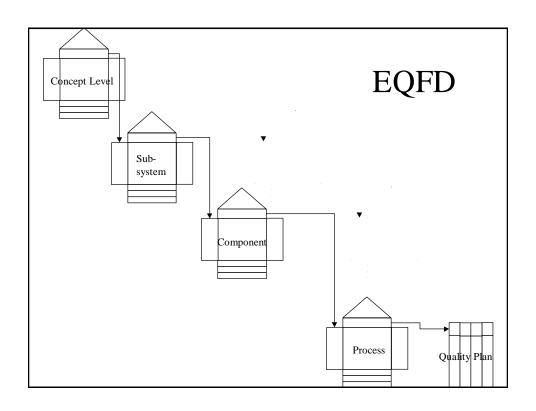
IPPD 2/17/00 HoQ and FMEA

## **Methods for Managing Customer Needs**

## Goal of this lecture

- Introduce you to three tools
  - HoQ
  - FMEA
  - Requirements flowdown
- Understand the uses/problems of each
- Assignment
  - Need to perform FMEA, HoQ and requirements flowdown on your product
  - Need to identify with these tools the key risks


# Wide variety of tools that


IPPD 2/17/00 HoQ and FMEA

- Highlight problems
- Highlight tradeoffs
- Used to facilitate discussion
- Create "to-do" lists or responsibility lists
- To organize and systematically manage critical issues

## Three tools

- House of Quality (HoQ)
- Failure modes and effects analysis (FMEA)
- Requirements flowdown





## HOQ

IPPD 2/17/00 HoQ and FMEA

## **Benefits**

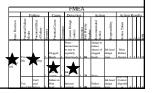
- Captures relationships
- Traceable
- Competitive information included

## **Problems**

- Time consuming
- EQFD almost never done
- Difficult to see linkages and system interfaces
- Mixing problems
  - •nominal
  - variation

# Fanure Modes and Effects Analysis

- Tool to
  - identify failure
  - assess failure
  - identify actions to mitigate risk of failure
    - redesign
    - special control
- It is a living document that should be
  - started in the beginning of the design
  - followed through to production


## **FMEA**

IPPD 2/17/00 HoQ and FMEA

| FMEA           |                            |                                |          |                     |            |                                                                  |           |                         |                                                      |                            |                          |        |   |   |     |
|----------------|----------------------------|--------------------------------|----------|---------------------|------------|------------------------------------------------------------------|-----------|-------------------------|------------------------------------------------------|----------------------------|--------------------------|--------|---|---|-----|
|                | Failure                    |                                |          | Cause               |            | Detection                                                        |           | Action                  |                                                      |                            | Action Results           |        |   |   |     |
| Item/ Function | Potential Failure<br>Modes | Potential Effect<br>of Failure | Severity | Potential Cause     | Occurrence | Current Design<br>Control                                        | Detection | Risk Priority<br>Number | epercommended                                        | Responsibility             | Action Taken             | S      | 0 | Q | RPN |
|                | Too little                 |                                | 7        | Clogged<br>Heads    | 4          | None -<br>instructions<br>to user to<br>regularly<br>clean heads | 3         | 84                      | change to<br>reduce<br>chance of<br>clogged<br>heads | Ink head<br>design<br>team | More<br>Robust<br>Design | 7      | 2 | 2 | 28  |
| Deposit<br>Ink | Ink                        | printing                       | 7        | Low Ink<br>Levels   | 4          | Ink Level                                                        | 1         | 28                      | None                                                 |                            | Improved                 |        |   |   |     |
|                | Too                        | Can't<br>read                  |          | Failure in<br>Print |            | Internal                                                         |           |                         | Failure                                              | Ink head<br>design         | Control                  |        |   |   |     |
|                | much Ink                   |                                | 8        | head                | 2          | controls                                                         | 3         | 48                      | analysis                                             | team                       | Algorithi<br>m           | n<br>8 | 1 | 1 | 8   |

# **Text in FMEA**

- List all functions
- Use a cross functional team to to identify
  - potential failure mode for each function
  - effect of that failure mode
  - cause of failure mode
  - current design controls (redundancy, error checking, testing)



#### Severity

- 10 Hazardous Effect
- 9 Serious Effect
- 8 Extreme Effect
- 7 Major Effect
- 6 Significant Effect
- 5 Moderate Effect
- 4 Minor Effect
- 3 Slight Effect
- 2 Very Slight Effect
- 1 No Effect

#### Occurrence

- 10 Almost Certain (> 1 in
- 2)
- 9 Very high (1 in 3)
- 8 High (1 in 8)
- 7 Moderately High (1 in 20)
- 6 Medium (1 in 80)
- 5 Low (1 in 400)
- 4 -Slight (1 in 2,000)
- 3 -Very Slight (1 in 15,000)
- 2 Remote (1 in 150,000)
- 1 Almost Never (<1 in 1,500,000)

#### Detection

- 10 Almost impossible no known method to detect
- 9 Remote (unreliable)
- 8 very slight
- 7 Slight
- 6 Low
- 5 Medium
- 4 -Moderately high
- 3-High
- 2 Very High
- 1 Almost Certain

Example for Auto Industry:

S6 - Customer experience discomfort. Vehicle Performance degraded but operable and safe. Partial loss of System function, but operable

# Severity, Occurrence and Detection

- Numbers are
  - product specific
  - product stage specific (i.e., early in design vs. production)
- · Meaning should be
  - agreed on by the Cross functional team
  - consistently used

## **Risk Priority Number**

IPPD 2/17/00 HoQ and FMEA

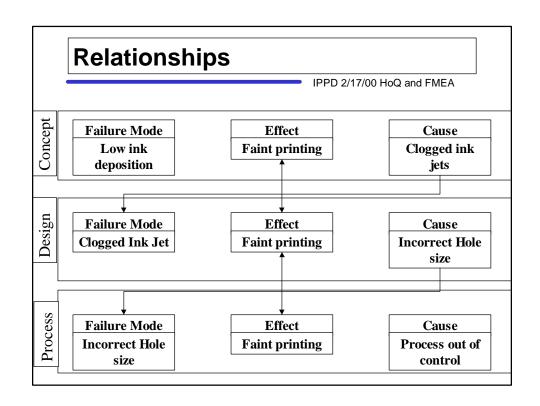
- RPN = Severity \* Occurrence \* Detection
- Rank order according to RPN
- No physical meaning to RPN.
- Used to "bucket problems"
- Don't spend a lot of time worrying about what a measure of "42" means

## **Meaning of RPN**

- Severity High, Occurrence High, Detection Low (i.e., can be detected)
  - Although the problem is of high risk it can easily be detected
- Severity Medium, Occurrence High, Detection High (i.e., can not be detected)
  - Large chance of a problem but can not be detected so it needs extra action

#### **Debate on RPN**

IPPD 2/17/00 HoQ and FMEA


- Two failure modes may have the same RPN
  - -S 10, O 1, D 2 (RPN = 20)
  - -S-1, O-5, D-4
- Which one deserves more attention
  - Typically, anything that has a failure mode of 10 is automatically addressed

#### **Actions**

- This is the important part of the FMEA
- Change design to reduce
  - Severity (redundancy)
  - Occurrence (change in design, or processes)
  - Detection (improve ability to identify the problem before it becomes critical)
- Assign a person or a team to the problem
- Follow up and assess the action with a new RPN number

#### **FMEA Levels**

- FMEA 1 (Concept)
  - Failures in the concept (inability to achieve performance)
  - Detection
    - ability to find the failures (i.e., use of historical data, early models, etc.)
- FMEA 2 (Design)
  - Failures in current design (performance)
  - Detection
    - highlighting failures during the detail design phase (i.e., crash simulations)
- FMEA 3 (Process)
  - Failures in production process
  - Detection
    - finding the errors in the production line (i.e., SPC, inspection)



## **Uses**

- Concept
  - Identify where the *concept* can be changed to prevent failure
- Design
  - Identify where design can be optimized to reduce the chance of failure
- Process
  - Identify where the process can be optimized to reduce the chance of failure

|      | Failures                     |        |          | Cause |           | Detection |  |     |
|------|------------------------------|--------|----------|-------|-----------|-----------|--|-----|
| Item | Potential<br>Failure<br>Mode | Effect | Severity | Casue | Occurance | Design    |  | RPN |
|      |                              |        |          |       |           |           |  |     |
|      |                              |        |          |       |           |           |  |     |
|      |                              |        |          |       |           |           |  |     |
|      |                              |        |          |       |           |           |  |     |
|      |                              |        |          |       |           |           |  |     |
|      |                              |        |          |       |           |           |  |     |

#### **FMEA**

IPPD 2/17/00 HoQ and FMEA

## **Benefits**

Systematic way to manage failures Comprehensive Prioritizes

## **Problems**

Based on qualitative assessment Unwieldy Hard to trace through levels Not always followed up

# Requirements flowdown

- A product is made up of many possible subsystems.
- Typically products designed by multiple teams
- Integrating these sub-systems requires
  - Systems engineers
  - Clear requirements for each sub-system

# **System Engineering**

IPPD 2/17/00 HoQ and FMEA

- · Creates a set of specifications for each
- Entitled "requirements flowdown"
- Several types of flowdowns
  - Functional
  - Budget
  - Interface

## **Functional flowdown**

- Performance of the system is a function of the parameters of two or more subsystems
- Print quality = f(speed of paper handling, skew of paper, wrinkling of the paper, image imprint quality)
- Need to understand system function and allocate the "variables" to the sub systems

## **Budgets**

IPPD 2/17/00 HoQ and FMEA

- There is often a limited commodity in a product
  - Temperature
  - Power
  - Variation
  - Volume
- Each sub-system gets allocated a budget that they must meet or exceed
- System engineer's role is to allocate and reallocate

## **Interfaces**

- To ensure the final product works, the interface standards must be set
- Holes, plugs, shapes, communication protocol
- These need to be set, managed, and adhered to.

# Take your product

IPPD 2/17/00 HoQ and FMEA

 Generate the start of a "concept failure" FMEA

## Problems with all tools

- Done as a box-checking
- Done but not followed up
- Done but not maintained
- Done but with the wrong people

#### Goal of this lecture

IPPD 2/17/00 HoQ and FMEA

- Introduce you to three tools
  - HoQ
  - FMEA
  - Requirements flowdown
- Understand the uses/problems of each
- Assignment
  - Need to perform FMEA, HoQ and requirements flowdown on your product
  - Need to identify with these tools the key risks

## **Next Thursday (no class tues)**

- Case: Toyota Motor Corporation: Target Costing System,
- Reading
  - Cooper: Target
     Costing and Value
     Engineering.
  - Nagle The Strategy and Tactics of Pricing.
- What is target costing and how can it be used?
- How did Toyota use it?
- What type of products make target costing difficult?
- How does product architecture effect the ability to execute target costing?
- How is target costing done on a new product?