■ IPPD 3/28/00 Teams

Teams

Best Practices

- Use an appropriate stage/gate process
- Simultaneous/concurrent engineering
 - Clear tasks
 - Tasks ordered correctly
- Cross functional teams

Concurrent engineering vs. Cross-function engineering IPPD 3/28/00 Teams

- Concurrent engineering = design task sequencing
- Cross-functional engineering = who is involved in the design tasks

Cross-functional engineering IPPD 3/28/00 Teams

- Shortcomings
 - time intensive
 - meeting intensive
- Benefits
 - reduce rework later
 - improve the quality
 - increase the impact of design for manufacturing
 - earlier in design it is easier to change

Functional groups

- Systems engineering
 - in charge of ensuring that the system works together
 - interface design and management
- Marketing
 - Define and explore the market
- Supplier liaisons / Materials
 - Work with and negotiate with suppliers
- Research and Technology
 - bring the new technology up to speed
- Quality
 - in charge of testing and validation of the product

IPPD 3/28/00 Teams

- Engineering functions
 - Aircraft: structures, electronics, hydraulics, etc.
 - Automotive: suspension, body, interior, controls
 - Copiers: toner, paper feeds, image processing, etc.
- Manufacturing
 - Tooling designers
 - Assemblers/hourly labor
 - Advanced manufacturing
 - Process designers
- Legal
- Finance

Concurrent and cross-functional categories

		Concurre	ent engineering
		Sequential	Overlapping
l engineering	Functionally oriented	 Traditional hand it over the wall High risk of expensive late design fixes Long design cycle 	 Hand partial information over the wall Risk of late design fixes Risk of design changes affecting downstream tasks Short design cycle
Cross-functional engineering	Cross- functionally oriented	 Long design cycle Lower risk of expensive design fixes Lower risk of design changes impacting downstream tasks 	 Short design cycle Lower risk of expensive design fixes Higher risk of design changes impacting downstream tasks

Cross-functional product development IPPD 3/28/00 Teams

- Making decisions with input from multiple inputs
- Different levels of interactions
 - Highly coupled manufacturing has input during the design process
 - Coupled manufacturing and design evaluate designs together (DFM, FMEA)
 - **De-coupled** functional teams come in to approve or reject current design

Types of cross-functional work

- sub-system to sub-system
 - Understanding interfaces between subsystems and functional systems
- sub-system to process
 - Understanding how the product relates to other non-product disciplines
 - manufacturing
 - marketing
 - delivery

Sub-system to sub-system

IPPD 3/28/00 Teams

- Cross-stream interaction (vs. upstream/downstream interactions)
- Example: Hardware and electronics communication
- Focus on system integration
- Focus on the interfaces between sub-systems

Work breakdown structure Aircraft Aircraft Tooling Fuselage Product is broken down into sub-systems Each sub-system is a "work package" and is

assigned to a given group

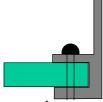
Sub-system to sub-system

Design the interfaces to

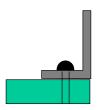
IPPD 3/28/00 Teams

- Allow for
 - redesign/replacement of functional elements
 - within a set of "rules" that are set by the interfaces between parts
- Enables
 - standard assembly processes
 - rapid redesign and debug

Sub-system to sub-system


Coupled

- Chunk A must be adjusted if Chunk B is.
- Requires iteration between sub-assembly groups


Uncoupled

IPPD 3/28/00 Teams

- Chunk A and B can be changed independently as long as interfaces are kept the same
- Requires interface standardization agreement between sub-assembly groups

Sub-system to sub-system

Pimmler and Eppinger - Chunk design IPPD 3/28/00 Teams

- · Sub-systems are highly coupled - automotive climate control
- Break the product down into subsystems that reduce the number of cross-chunk interactions

Sub-system to sub-system

Interactions

- Spatial do the parts have geometric interactions
- Energy do the parts share energy or not want to share energy (i.e., thermal etc)
- Information signals (i.e., EMF
- · Materials fluid flows etc.

Sub-system to sub-system

		a	b	с	d	e	f	g	h	i	j	k	1	m	n	o	p
Radiator	a	х	2 0 0 2			2 0 0											
Fan	b	02	Х			2 0 0 2						IPI	D	3%	28/	00	Те
H. Core	с			х	10 00			2 0 0 0	0 0 0								0 0 0 2
H. Hose	d			10 00	х					0 0 0							
Condenser	e		20 02			х	0 2 0 2		2 0 2								
Compressor	f					0 2 0 2	х				0 0 2 0			1 0 0 0			
Evap. Case	g			20 00				х	20 00							2 0 0 0	
Evap. Core	h			0 0 0			0 2 0 2	2 0 0 0	х	1 0 0 2							0 0 0 2
Accumulator	i				0 0 0		1 0 0 2		1 0 0 2	х	1 0 0 0						
Ref. Controls	j						0 0 2 0			1 0 0 0		00 20		1 0 0 0			
Air Contr.	k						0 0 2 0				00 20		0 0 2 0			0 0 20	
Sensors	1											00 20	х	1 0 0 0			
Command Dist	m		1 0 0 0				1 0 0 0					1 0 0 0	1 0 0 0	х		1 0 0 0	
Actuators	n							2 0 0 0				00 20		1 0 0 0			
stemetonsub	-sys	tei	n					2 0 0 0				0 0 20		1 0 0 0		x	2 0 0 2

		k	j	1	d	m	a	b	e	f	i	h	с	p	О	g	n
			00			10				00					0 0		0 0
Air Contr.	k	х	20	20		00				20					20		20
Ref. Controls		00	Ų.			10 00				00	0 0	Iр	Ьг	3/	28/	ho	Te
Rei. Controls	,	2 0 0 0	^			10			<u> </u>				Ľ	0,	-0,	۳	
Sensors	1	20		х		00		C	O	nt	ro	ls					
H. Hose	d				х						0 0 0		10 00				
Command Dist	m	10 00	10 00			х		1 0 0 0		1 0 0 0					1 0 0 0		1 0 0 0
Radiator	a						х	2 0 0 2	2 0 0		Fı	ro	∟ nt	e	no	<u></u>	
Fan	b						2 0 0 2		20 02								Γ΄
Condenser	e						2 0 0	20 02	х	0 2 0 2		20 2					
Compressor		00	•			10			02	v	10 02						
Compressor	Re	fri	d	ge	era	ın	t		0.2	10	0 2	10					
Accumulator	_	_	· ·	_				_	ł	0 2	х	02					
Evap. Core	h								2 0 2	0 2 0 2	1 0 0 2	х	0 0 0	00		20 00	
H. Core	с				1 0 0 0							0 0 0	х	0 0 0 2		2 0 0 0	
Blower Motor	р	Į١	nt	eı	ʻio	r	Αi	r				00 02			2 0 0 2	20 02	
blower Contr.	o	0 0 20				00					ſ			2 0 0 2		20 00	
stemto sub)- § y	ste	m											2 0 0 2		х	2 0 0 0

Sub-system to process interactions IPPD 3/28/00 Teams

- Upstream/downstream interactions
- I.e., Manufacturing/ DFM analyses
- · Ensure that the global optimum is achieved
- Difficult because
 - incentives are different
 - time scales are different
 - language/methods are different
- Subject of DFM lecture later in class

Three types of communication

- Coordination
 - technical information transfer
 - task coordination
- Knowledge
 - consultation
 - instruction
- Inspiration
 - motivation
 - managerial affirmation

Morelli, et al. "Predicting technical communication in product dev. Organizations"

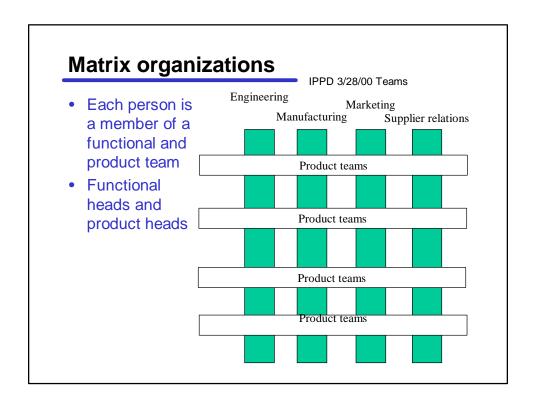
Team dilemma

IPPD 3/28/00 Teams

- No clear evidence that cross-functional teams actually improve productivity
 - hard to measure differences
 - no control case
- People know/think it is the "right" thing to do.

Diversity in cross-functional teams

- Diversity
 - increases internal conflict
 - reduces innovation, performance, etc
 - but, increases the teams ability to communicate with the outside world
- Companies need to have diversity in their teams to enable higher quality
- To overcome conflict
 - Training and facilitation
 - Rotation of people through groups
 - Management and evaluation incentives to perform together
 - Large organizational change


Group vs. Team

IPPD 3/28/00 Teams

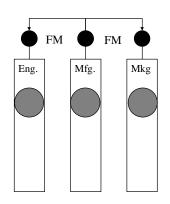
- Group
 - Individual projects with input from other members
 - Incentive structures are external to the group (i.e., functionally oriented)
- Team
 - Team has the deliverables and is responsible for the package
 - Incentive structures are internal to the group

Generalists vs. Integrators

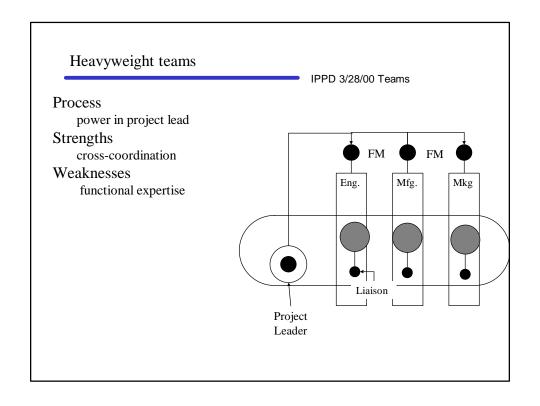
- Jack of all trades
- Team members have expertise in many areas
- Allows flexibility in team membership
- Dilutes functional strengths
- Specialists with an understanding of how to integrate their areas with others
- Team members are still experts

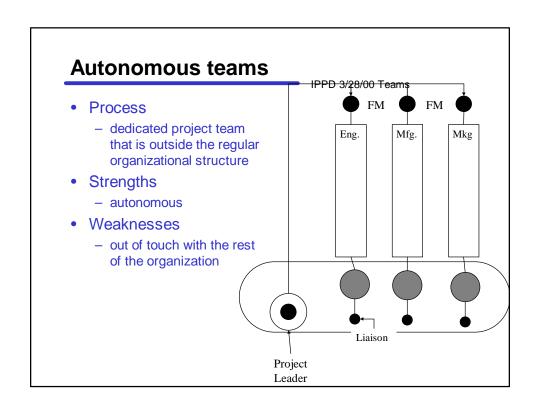
Problems with matrix organizations IPPD 3/28/00 Teams

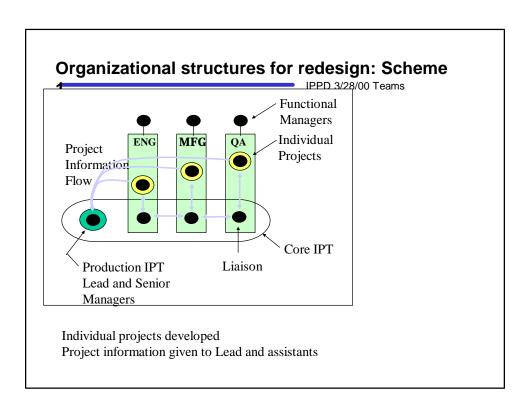
- Unclear incentives
 - not sure who your boss is
 - who do you eventually have to satisfy
- Power struggle
 - dual command
- Paralysis of analysis
 - matrix org. ≠ group decision making
 - need a clear leader who makes decisions


Organization types

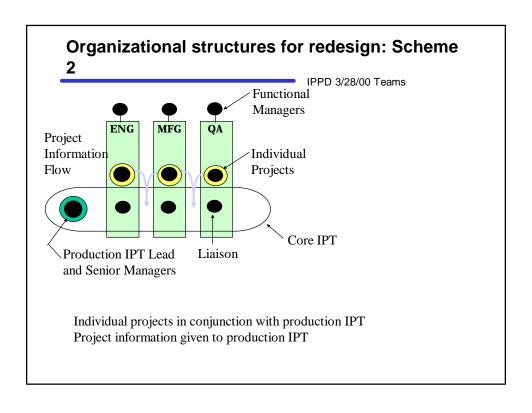
IPPD 3/28/00 Teams

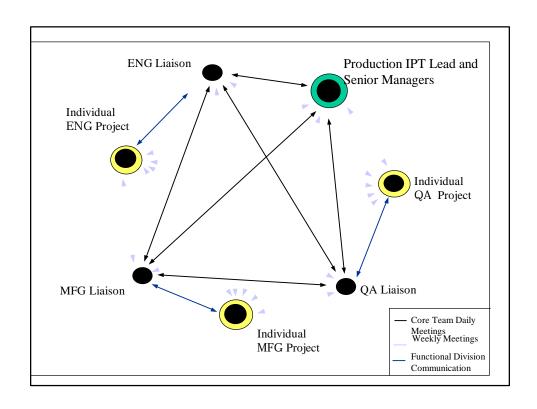

- functional teams
- lightweight
- heavyweight
- autonomous

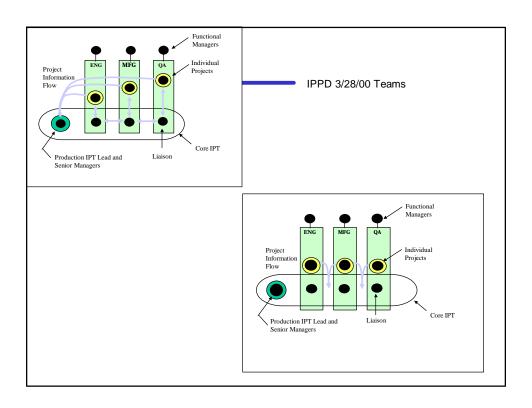

Functional teams


- Process
 - Sequential flow
 - Intermediate meetings to hand off work
- Strengths
 - Strong functional capabilities
 - Clear career path
- Weaknesses
 - System integration is difficult
 - System optimization is difficult




Lightweight teams IPPD 3/28/00 Teams **Process** each functional group has a liaison who coordinates the project FM FM - lead by a lightweight Eng. Mfg. Mkg coordinator -- very little status to coordinate Strengths same as function plus - there is some coordination Liaison Weaknesses leader has no power Project Leader





Japanese vs. US leadership

IPPD 3/28/00 Teams

- Team leader (shusa) controls all aspects of the car
- has ultimate say
- Team leader is a coordinator who coordinates
- Can be overridden

Leadership responsibilities and characteristics in Japan

- · coordination for many functional areas
- entire life cycle of the product
- concept creation
- specifications, costs, layout and major components
- design
- customer interaction
- negotiate and decide on conflicts
- understand the whole product and process

Thursday

- 1) Present the strategy and plan
- 2) Presentation should focus on the risks and what is your plan to mitigate them
- Tues
 - The Legal Protection of Intellectual Property (HBS #9-898-230)
 - Levin, R., Klevorick, A., Nelson, R., and Winter, S.
 1987. "Appropriating the returns from research and development." Brookings Papers on Economic Activity, 3: 783-820.
 - Case: CVD vs. A.S. Markham Corporation (HBS # 9-388-042)