IPPD 4/25/00 DFM

Lecture 19 Design for Manufacture Design for Assembly

1

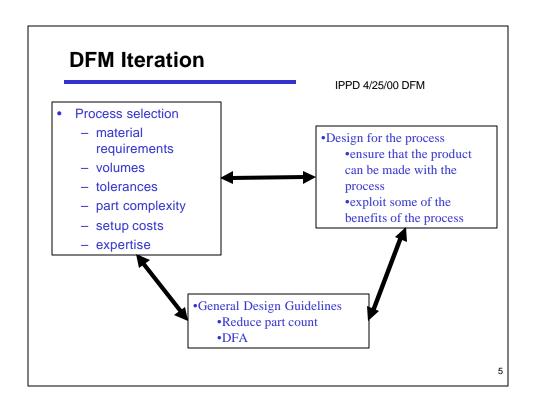
DFM

IPPD 4/25/00 DFM

- Design's decisions will have significant impact on the costs associated with the manufacture of the product
 - Piece part costs
 - Cost of quality
 - yield
 - process precision
 - Set-up costs
 - Labor content
 - Throughput
 - Flexibility

Design for Manufacture

IPPD 4/25/00 DFM


- Broad term applied to a variety of tool, guidelines, and methods to ensure
 - Low cost parts
 - Piece parts are built using the lowest cost process possible
 - Design dimensions/tolerances are specified with *thought*.
 - Low cost assembly
 - DFA
 - Low cost processes
 - Processes are designed to target the critical to function characteristics

3

Tradeoffs

IPPD 4/25/00 DFM

- · Piece part simplicity vs. assembly time
- Variety vs. integrality
- Manufacturability vs. performance

DFM Support Processes

IPPD 4/25/00 DFM

- Simultaneous Engineering / Cross-functional teams
- Design for Manufacturing Reviews
- DFM Guidelines
- DFM Metrics
- Simulation software

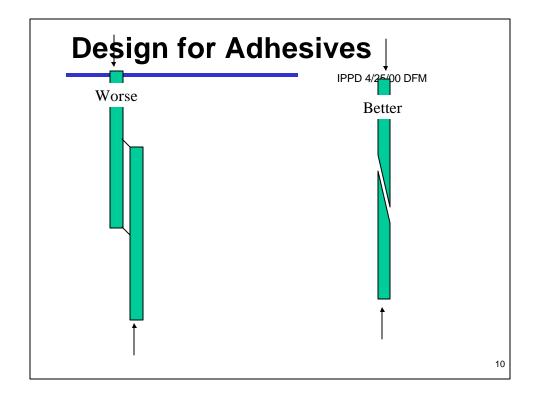
Simultaneous Engineering / Crossfunctional teams

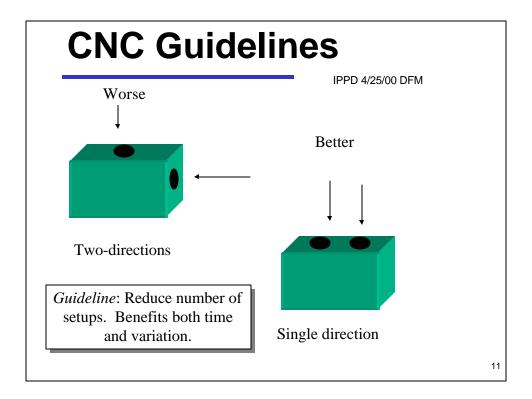
IPPD 4/25/00 DFM

- Simultaneously design the product and the process
- Prevents over-the-wall design
- Cross-functional teams continually evaluate each others work and have input on the whole product/process design

7

DFM Reviews


 Formal reviews where experts are brought in to evaluate the manufacturability of the product


- Formalized gate
- Problems
 - Often not taken seriously
 - "we never can get design to make changes, we'll just wait until we get it to make it manufacturable"

DFM Guidelines

IPPD 4/25/00 DFM

- Formalized lists of guidelines for a specific manufacturing process
- Developed by manufacturing to generate rules for design to follow
- Can be either computer based or book based
- Heuristics rather than quantitative
- Problems
 - Just sit on the desk never used

Design for Assembly

IPPD 4/25/00 DFM

- Reduce assembly time by
 - Integral parts
 - Remove fasteners
 - Minimize assembly time

Minimize part count through integral parts

- Identify
 - parts that can be made of the same material
 - parts that don't move relative to each other
 - parts that do move but can u
 - integral joints
 - flexures
- Problems
 - Reduce modularization
 - Increase complexity
- Benefits
 - Reduced assembly
 - Reduced tolerance stack-ups

13

Minimize assembly time • Easy to get part - parts don't tangle • Easy to orient part - symmetrical or very unsymmetrical parts • Easy to assemble parts - self aligning - lead-in chamfers

Minimize fasteners

IPPD 4/25/00 DFM

- Options
 - Press fits
 - Adhesives
 - Snap-fits
 - Integral parts
- Problems
 - fasteners are stronger
 - fasteners can be used to locate parts
 - temperature insensitive
 - less sensitive to part variation

15

DFM metrics

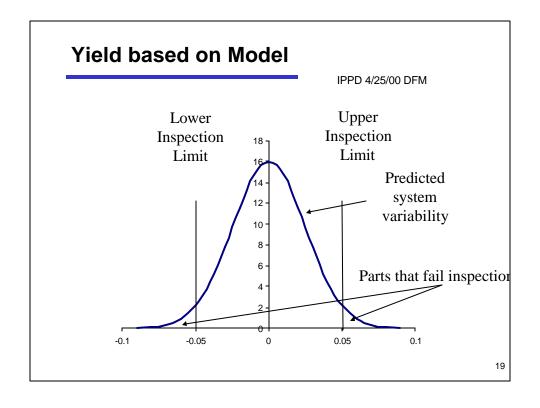
IPPD 4/25/00 DFM

- Quantitative evaluations that are used to put a metric on the manufacturability of a product.
- The goal is to improve the metrics through design changes
- Examples
 - Boothroyd and Dewhurst's complexity
 - Yield
 - -# of manuf. Rule violations

Boothroyd and Dewhurst Complexity factor

IPPD 4/25/00 DFM

- Total number of parts N_P
- Total number of part types N_T
- Total number of interfaces N_i


Complexity =
$$\sqrt{N_T + N_{P+}N_i}$$

17

Yield

IPPD 4/25/00 DFM

- Calculation of the number of parts that will not pass inspection.
- · Ways to calculate
 - Models of the product
 - Statistical correlation with historical data

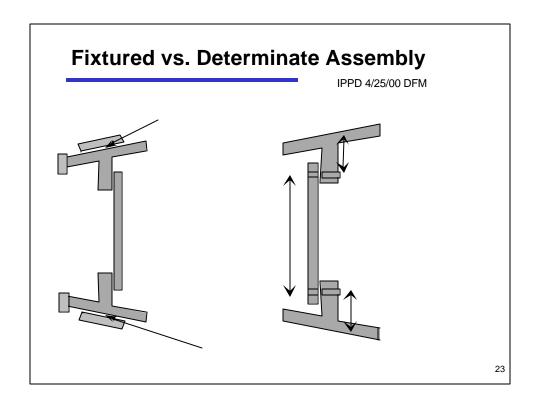
Yield based on Statistical Analysis

IPPD 4/25/00 DFM

- Use historical data to determine the product characteristics that are highly correlated with yield problems
- SMT example
 - Process technology
 - Number of parts
 - Number of interconnects
 - Volume

—

Simulation software


IPPD 4/25/00 DFM

- Used to simulate the "as built" state of a product
- Examples
 - Mold flow (injection molding)
 - CNC simulations
- Problems
 - Don't give guidance on the changes
 - Time consuming

21

Collect the DFM guidelines and review

IPPD 4/25/00 DFM

Fixtured vs. Determinate

IPPD 4/25/00 DFM

	Fixtured	Determinate	
Locaiton	Fixtures	Precision	
		holes	
Flexibility of	Low	High	
fixture			
Precision	Low	High	
requirements			
Ability to	Low	High	
rework			
Assembly	High	Low	
Time			

Sub-assemblies

IPPD 4/25/00 DFM

- Build ups
 - Parts (bulkheads, doors, etc) are built up of many parts that are assembled in dedicated fixtures
- Monolithic
 - parts are machined out of a large
 - forging, or
 - billet
 - to make a single piece

25

Monolithic vs. build up

IPPD 4/25/00 DFM

	Monolithic		Build up
	Near net shape	Billet	
	forging		
Cycle time	High	Low	flexible
Ability to increase	Low	Low/med	high
throughput			
Crack resistance	Med	Med.	High
"Quality"	High/med	High	Med/low

Lecture 20:

IPPD 4/25/00 DFM

- VARIATION RISK MANAGEMENT, THE ROLE OF QUALITY
- No readings