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Resonant Cavities and Waveguides

This chapter initiates our study of resonant accelerators., The category includes rf
(radio-frequency) linear accelerators, cyclotrons, microtrons, and synchrotrons. Resonant
accelerators have the following features in common:

1. Applied electric fields are harmonic. The continuous wave (CW) approximation is valid;
a frequency-domain analysis is the most convenient to use. In some accelerators, the
frequency of the accelerating field changes over the acceleration cycle; these changes are
always slow compared to the oscillation period.

2. The longitudinal motion of accelerated particles is closely coupled to accelerating field
variations.

3. The frequency of electromagnetic oscillations is often in the microwave regime. This
implies that the wavelength of field variations is comparable to the scale length of
accelerator structures. The full set of the Maxwell equations must be used.

Microwave theory relevant to accelerators is reviewed in this chapter. Chapter 13 describes the
coupling of longitudinal particle dynamics to electromagnetic waves and introduces the concept of
phase stability. The theoretical tools of this chapter and Chapter 13 will facilitate the study of
specific resonant accelerators in Chapters 14 and 15.

As an introduction to frequency-domain analysis, Section 12.1 reviews complex exponential
representation of harmonic functions. The concept of complex impedance for the analysis of
passive element circuits is emphasized. Section 12.2 concentrates on a lumped element model for
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the fundamental mode of a resonant cavity. The Maxwell equations are solved directly in Section
12.3 to determine the characteristics of electromagnetic oscillations in resonant cavities. Attention
is centered on the T, mode because it is the most useful mode for particle acceleration.

Physical properties of resonators are discussed in Section 12.4. Subjects inclQdethe of a

cavity and effects of competing modes. Methods of extracting energy from and coupling energy
to resonant cavities are discussed in Section 12.5.

Section 12.6 develops the frequency-domain analysis of transmission lines. There are three
reasons to extend the analysis of transmission lines. First, an understanding of transmission lines
helps to illuminate properties of resonant cavities and waveguides. Second, transmission lines are
often used to transmit power to accelerator cavities. Finally, the transmission line equations
illustrate methods to match power sources to loads weifittive components, such as resonant
cavities. In this application, a transmission line acts to transform the impedance of a
single-frequency input. Section 12.7 treats the cylindrical resonant cavity as a radial transmission
line with an open-circuit termination at the inner radius and a short-circuit termination at the outer
radius.

Section 12.8 reviews the theory of the cylindrical waveguide. Waveguides are extended hollow
metal structures of uniform cross section. Traveling waves are contained and transported in a
waveguide; the frequency and field distribution is determined by the shape and dimensions of the
guide. A lumped circuit element model is used to demonstrate approximate characteristics of
guided wave propagation, such as dispersion and cutoff. The waveguide equations are then solved
exactly.

The final two sections treat the topic of slow-wave structures, waveguides with boundaries that
vary periodically in the longitudinal direction. They transport waves with phase velocity equal to
or less than the speed of light. The waves are therefore useful for continuous acceleration of
synchronized charged particles. A variety of models are used to illustrate the physics of the
iris-loaded waveguide, a structure incorporated in many traveling wave accelerators. The
interpretation of dispersion relationships is discussed in Section 12.10. Plots of frequency versus
wavenumber yield the phase velocity and group velocity of traveling waves. It is essential to
determine these quantities in order to design high-energy resonant accelerators. As an example,
the dispersion relationship of the iris-loaded waveguide is derived.

12.1 COMPLEX EXPONENTIAL NOTATION AND IMPEDANCE

Circuits consisting of a harmonic voltage source driving resistors, capacitors, and inductors, are
described by an equation of the form

o (difd) « B i+ v [idt =V, comt (12.1)

The solution of Eqg. (12.1) has homogeneous and particular parts. Transitory behavior must
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include the homogenous part. Only the particular part need be included if we restrict our attention

to CW (continuous wave) excitation. The particular solution has the form
i(t) = I, cosEt+g). (12.2)

I, ande depend on the magnitude of the driving voltage, the elements of the circuiy.and
Because Eq. (12.1) describes a physical system, the solution must reflect a physical answer.

Therefore |, and¢ are real numbers. They can be determined by direct substitution of Eq. (12.2)
into Eq. (12.1). In most cases, this procedure entails considerable manipulation of trigonometric

identities.

The mathematics to determine the particular solution of Eq. (12.1) and other circuit equations

with a single driving frequency can be simplified considerably through the use of the complex

exponential notation for trigonometric functions. In using complex exponential notation, we must

remember the following facts:

1. All physical problems must have an answer that is a real number. Complex numbers
have no physical meaning.

2. Complex numbers are a convenient mathematical method for handling trigonometric
functions. In the solution of a physical problem, complex numbers can always be grouped
to form real numbers.

3. The answers to physical problems are often written in terms of complex numbers. This
convention is used because the results can be written more compactly and because there

are well-defined rules for extracting the real-number solution.
The following equations relate complex exponential functions to trigonometric functions:
cosnt = [exp(ot)+exp(-jot)]/2, (12.3)
sinot = [exp(wt)-exp(-jot)]/2). (12.4)

wherej = /-1 . The symbglis used to avoid confusion with the currentThe inverse
relationship is

expfot) = cosot + jsinwt. (12.4)

In Eq. (12.1), the expressiovj[exp(ot) +exp(-jmt)[/2 s substituted for the voltage, and the
current is assumed to have the form

i(t) = A expfot) + B exp(-jot). (12.5)
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The coefficientsA andB may be complex numbers if there is a phase difference between the
voltage and the current. They are determined by substituting Eq. (12.6) into Eq. (12.1) and
recognizing that the terms involving expf) and exp(-pt) must be separately equal if the
solution is to hold at all times. This procedure yields

A = (joVy2) | (-a0® + jop + ), (12.7)

B = (-joVy2) / (-aw? - jop + ¥). (12.8)

The complex conjugate of a complex number is the number yihbstituted foj. Note thatB is
the complex conjugate @&. The relationship is denotegi= A",

Equations (12.7) and (12.8) represent a formal mathematical solution of the problem; we must
rewrite the solution in terms of real numbers to understand the physical behavior of the system
described by Eqg. (12.1). Expressing Eg. (12.2)in complex notation and setting the result equal to
Eq. (12.6), we find that

Aexpfot) + Aexp(-jot) = I, [exp(ot)explp) + exp(-jot)exp(-¢)]/2. (12.9)
Terms involving exp(pt) and exp(pt) must be separately equal. This implies that
A = 1o exp()/2 = I, (cosp + jsing)/2 (12.10)

by Eq. (12.5). The magnitude of the real solution is determined by multiplying Eq. (12.10) by its
complex conjugate:

A- A" =12 (cosp+sing)/2,

or

l,= 2A- A" (12.11)

Inspection of Eq. (12.10) shows that the phase shift is given by
¢ = tan{Im(A)/ReA)]. (12.12)

Returning to Eq. (12.1), the solution is
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ly = Voo 1 (y-an?)? + o?f,

¢ = tan}(y-an?) / op.

This is the familiar resonance solution for a driven, damped harmonic oscillator.

Part of the effort in solving the above problem was redundant. Because the coefficient of the
second part of the solution must equal the complex conjugate of the first, we could have used a
trial solution of the form

i(t) = A expot). (12.13)

We arrive at the correct answer if we remember that Eq. (12.13) represents only half of a valid
solution. OncéA is determined, the real solution can be extracted by applying the rules of Eq.
(12.11) and (12.12). Similarly, in describing an electromagnetic wave traveling irzttiee€tion,

we will use the formE ~ E, exp[(ot-k2] . The form is a shortened notation for the function

E ~ E, exp[(ot-k2] + E, exp[-j(ot-k2)] ~ E, cost-kz+p)whereE, is a real number. The
function for a wave traveling in the negative z direction is abbrevidied E; exp[j(wt+k2)]

Complex exponential notation is useful for solving lumped element circuits with CW excitation. In
this circumstance, voltages and currents in the circuit vary harmonically at the driving frequency
and differ only in amplitude and phase. In complex exponential notation, the voltage and current
in a section of a circuit are related by

Vil = Z (12.14)

The quantityZ, the impedance, is a complex number that contains information on amplitude and
phase. Impedance is a function of frequency.
The impedance of a resistBris simply

r =R (12.15)

A real impedance implies that the voltage and current are in phase as shown in Figure 12.1a. The
time-averaged value &fl through a resistor is nonzero; a resistor absorbs energy.

The impedance of a capacitor can be calculated from Eq. (9.5). If the voltage across the
capacitor is

V(t) =V, cosnt, (12.16)

then the current is
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\VERN'Y

(a) (b)

fc)
Figure 12.1 Variations of voltage and current in simple circuit elements- driven at single
frequency. («) Resistor. (b) Capacitor. (¢) Inductor.

i(t) = C dVdt = -oCV, sinot = oCV, coset + n/2). (12.17)

Equation (12.17) specifies the magnitude and amplitude of voltage across versus current through
a capacitor. There is a 9@hase shift between the voltage and current; the current leads the
voltage, as shown in Figure 12.1b. The capacitor is a reactive element; the time avevayetpf

is zero. In complex exponential notation, the impedance can be expressed as a single complex
number

Z. = (LC) expn/2) = -jloC (12.18)

if the convention of Eq. (12.13) is adopted. The impedance of a capacitor has negative imaginary
part. This implies that the current leads the voltage. The impedance is inversely proportional to
frequency; a capacitor acts like a short circuit at high frequency.

The impedance of an inductor can be extracted from the equ¥tdn= L di(t)/dt. Again,
taking voltage in the form of Eq. (12.16), the current is

V, sinmt Vo cost-n/2
ol ol '

it) =

The current lags the voltage, as shown in Figure 12.1c. The complex impedance of an inductor is
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Z, = jol. (12.19)

The impedance of an inductor is proportional to frequency; inductors act like open circuits at high
frequency.

12.2 LUMPED CIRCUIT ELEMENT ANALOGY FOR A RESONANT
CAVITY

A resonant cavity is a volume enclosed by metal walls that supports an electromagnetic
oscillation. Inaccelerator applications, the dksting electric fieldsaccelerate charged particles

while the oscillating magnetic fields provide inductive isolation. To initiate the study of
electromagnetic oscillations, we shall use the concepts developed in the previous section to solve
a number of lumped element circuits. The first, shown in Figure 12.2, illustrates the process of
inductive isolation in a resonant circuit. A harmonic voltage generator with output

V(t) =V, exp(wt) drives a parallel combination of a resistor, capacitor, and inductor.
Combinations of impedances are governed by the same rules that apply to parallel and series
combinations of resistors. The total circuit impedance at the voltage generator is

Z(w) =V, expfot) / 1, expfot) = (1/Z, + 1Z, + 1/Z)™ (12.20)

The quantityl, is generally a complex number.
Consider the part of the circuit of Figure 12.2 enclosed in dashed lines: a capacitor in parallel
with an inductor. The impedance is

Z(®) = (juC+1lfjoL)? = joL/(1-0?LC). (12.21)

The impedance is purely imaginary; therefore, the load is reactive. At low frequency
((w < 14/LC) the impedance is positive, implying that the circuit is inductive. In other words,
current flow through the inductor dominates the behavior of the circuit. At high frequency, the

r——— == A

S |

14 ( g I I

N RS ! L |

! I

Generator 6; R c L
- | |

! |

| |

| — |

R -

Figure 12.2 Driven RLC circuit with shunt resistance. Reactive section of circuit indicated by

dashed line,
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Figure 123 Driven RLC circuit; inductor with series
resistance.
impedance is negative and the circuit acts as a capacitive load. Whem, = 1//LC , the

impedance of the combined capacitor and inductor becomes infinite. This condition is called
resonancgethe quantityw, is the resonant frequency. In this circumstance, the reactive part of the
total circuit of Figure 12.2 draws no current when a voltage is applied across the resistor. All
current from the generator flows into the resistive load. The reactive part of the circuit draws no
current ato = o, because current through the inductor is supplied completely by displacement
current through the capacitor. At resonance, the net current from the generator is minimized for a
given voltage. This is the optimum condition for energy transfer if the generator has nonzero
output impedance.

The circuit of Figure 12.3 illustrates power losses in resonant circuits. Again, an inductor and
capacitor are combined in parallel. The difference is that the inductor is imperfect. There are
resistive losses associated with current flow. The losses are represented by a series resistor. The
impedance of the circuit is

Z(w) = [joC + U({joL+R)] ! = [joL+R] / [(1-0°LC) + joRd.

Converting the denominator in the above equation to a real number, we find that the magnitude of
the impedance is proportional to

Z(0) ~ U[(1-0¥0d)? + (RO (12.22)

Figure 12.4 shows a plot of total current flowing in the reactive part of the circuit versus current
input from the generator. Two cases are plotted: resonant circuits with low damping and high
damping. Note that the impedance is no longer infiniteat 1/4/LC . For a cavity with resistive
losses, power must be supplied continuously to suppoittad&mns. A circuit is in resonance

when large reactive currents flow in response to input from a harmonic power generator. In other
words, the amplitude of electromagnetic oscillations is high. Inspection of Figure 12.4 and Eq.
(12.22) shows that there is a finite response width for a driven damped resonant circuit. The
frequency width,Aw = w-o, , to reduce the peak impedance by a factor of 5 is
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Figure 124 Resonant drive of RLC circuit. (a) Circuit diagram; circle represents ac generator.
(b) Ratio of reactive current to current input from generator (ig/ig); @ = 100. (c) ig/ig; Q = 20.

Ao @~ R
— - (12.23)

®o \/EZ

Resonant circuits are highly underdamped; therefargm « 1
Resonant circuit damping is parametrized by the quaftityhe circuitQ is defined as

o, (energy stored in the resonant circpit
(time-averaged power lo$s

(12.24)
_ = (energy stored in the resonant circpit
(energy lost per half cyc)e

In the limit of low damping near resonance, tleactive current exchanged between the inductor
and capacitor of the circuit of Figure 12.3 is much larger than the current input from the
generator. The reactive currenti{) = |, exp(ot) , whéyes a slowly decreasing function of
time. The circuit energy, U, is equal to the energy stored in the inductor at peak current:

364



Resonant Cavities and Waveguides

U = Lljg/2 (12.25)

Energy is lost to the resistor. The power lost to the resistor (averaged over a cycle) is

P = i)’ R = %R (12.26)

Substituting Egs. (12.25) and (12.26) into Eq. (12.24),@halue for theLRCcircuit of Figure
12.3is

Q = LR = yLIC /R (12.27)

In an underdamped circuit, the characteristic impedance df@harcuit is large compared to the
resistance, so th& » 1.

Energy balance can be used to determine the impedance that the circuit of Figure 12.3 presents
to the generator at resonance. The input voltdge equal to the voltage across the capacitor.
The input voltage is related to the stored energy in the circuit by

U = CVZ/2 = V¢ | 2m4/LIC. (12.28)

By the definition of Q, the input voltage is related to the average power loss by

P =V} I 2Q/LIC. (12.29)

Defining the resistive input impedance so that

P=VXt) /R =VZ/2R, (12.30)

we find at resonanceu{ = o, ) that

R, = Qy/L/IC = (JLIC?*/ R (12.31)

The same result can be obtained directly from the general impedance expression in the limit
J/LIC » R. The impedance is much larger thRnThis reflects the fact that the reactive current is
much larger than the current from the generator. In terngg, dhe resonance width of an
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Figure 12.5 Reentrant cavity with on-axis power input.

imperfect oscillating circuit [Eq. (12.23)] can be written
Aolo, = 1/Q. (12.32)

366



Resonant Cavities and Waveguides

Resonant cavities used for particle acceleration have many features in common with the circuits
we have studied in this section. Figure 12.5 illustrates a particularly easy case to analyze, the
reentrant cavity. This cavity is used in systems with space constraints, such as klystrons. It
oscillates at relatively low frequency for its size. The reentrant cavity can be divided into
predominantly capacitive and predominantly inductive regions. In the central region, there is a
narrow gap. The capacitance is large and the inductance is small. A harmonic voltage generator
connected at the center of the cavity induces displacement current. The enlarged outer region acts
as a single-turn inductor. Real current flows around the wall to complete the circuit. If the walls

are not superconducting, the inductor has a series resistance.

Assume that there is a load, such as a beam, on the axis of the cavity. Neglecting cavity
resistance, the circuit is the same as that of Figure 12.2. If the generator frequency is low, most of
the input current flows around the metal wall (leakage current). The cavity is almost a short
circuit. At high frequency, most of the current flows across the capacitor as displacement current.
At the resonance frequency of the cavity, the cavity impedance is infinite and all the generator
energy is directed into the load. In this case, the cavity can be useful for particle acceleration.
When the cavity walls have resistivity, the cavity acts as a high impedance in parallel to the beam
load. The generator must supply energy for cavity losses as well as energy to accelerate the beam.

The resonant cavity accelerator has much in common with the cavity of an induction linear
accelerator. The goalis to accelerate particles to high energy without generating large
electrostatic voltages. The outside of the accelerator is a conductor; voltage appears only on the
beamline. Electrostatic voltage is canceled on the outside afdtelerator by inductively
generated fields. The major difference is that leakage current is inhibited in the induction linear
accelerator by ferromagnetic inductors. In the resonant accelerator, a large leakage current is
maintained by reactive elements. The linear induction accelerator has effective inductive isolation
over a wide frequency range; the resonant accelerator operates at a single frequency. The voltage
on the axis of a resonant cauvity is bipolar. Therefore, particles are accelerated only during the
proper half-cycle. If an accelerator is constructed by stacking a series of resonant cavities, the
crossing times for particles must be synchronized to the cavity oscillations.

The resonant frequency of the reentrant cavity can be estimated easil;/. Dimensions are

llustrated in Figure 12.5. The capacitance of the central regiGh s e & R,/d, and the
inductance id. = p a2/2n(Ro+a). .The resonant angular frequency is
0, = LLC = \/2n(Ry+a)del Ria%n? = ¢ 2R +a)d/Rja%r, (12.33)

12.3 RESONANT MODES OF A CYLINDRICAL CAVITY

The resonant modes of a cavity are the natural modes for electromagnetic oscillations. Once
excited, a resonant mode will continue indefinitely in the absence of resistivity with no further
input of energy. In this section, we shall calculate modes of the most common resonant structure
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Ro

|
= d ' Figure 12.6 Geometry of cylindrical resonant cavity.

encountered in particle accelerator applications, the cylindrical cavity (Fig. 12.6). The cavity
length is denoted and radiuR,.In the initial treatment of resonant modes, we shall neglect the
perturbing effects of power feeds, holes for beam transport, and wall resistivity. The cylindrical
cavity has some features in common with the reentrant cavity of Section 2.2. A capacitance
between the upstream and downstream walls carries displacement current. The circuit is
completed by return current along the walls. Inductance is associated with the flow of current.
The main difference from the reentrant cavity is that regions of electric field and magnetic field are
intermixed. In this case, a direct solution of the Maxwell equations is more effective than an
extension of the lumped element analogy. This approach demonstrates that resonant cavities can
support a variety of odation modes besides the low-frequency mode that we identified for the
reentrant cavity.

We seek solutions for electric and magnetic fields that vary in time according ta&xpje
must use the full set of coupled Maxwell equations [Egs. (3.11)-(3.14)]. We allow the pibssib
of a uniform fill of dielectric or ferromagnetic material, these materials are assumed to be linear,
characterized by parameterand . The field equations are

V x E + 0B/ot = 0, (12.34)
V-E-=0 (12.35)

V x B - gp AE/at = 0, (12.36)
V-B-=0. (12.37)

Applying the vector identityy x (V x V) = V(V:V) - V3V , Egs. (12.34)-(12.37) can be
rewritten as
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VE - (1N?) Q%E/at? = 0, (12.38)

V2B - (1N?) 82B/ot? = 0. (12.39)

where v is the velocity of light in the cavity medium,

v =c/ leplk 1. 12.40
oro

The features of electromagnetic oscillations can be found by solving either Eq. (12.38) or
(12.39) forE or B. The associated magnetic or electric fields can then be determined by
substitution into Eq. (12.34) or (12.36). Metal boundaries constrain the spatial variations of fields.
The wave equations have solutions only for certain discrete values of frequency. The values of
resonant frequencies depend on how capacitance and inductance are partitioned in the mode.

The general solutions of Egs. (12.38) and (12.39) in various cavity geometries are discussed in
texts on electrodynamics. We shall concentrate only on resonant modes of a cylindrical cavity that
are useful for particle acceleration. We shall solve Eq. (12.38) for the electric field since there are
easily identified boundary conditions. The following assumptions are adopted:

1.Modes of interest have azimuthal symmet#op = 0 ).
2.The electric field has no longitudinal variation, &€/0z = 0
3.The only component of electric field is longitudingl,
4.Fields vary in time as expf}).

The last two assumptions imply that the electric field has the form

E = E[(r) exp(nt) u.,. (12.41)

Using the cylindrical coordinate form of the Laplacian operator, dropping terms involving
azimuthal and longitudinal derivatives, and substituting Eq. (12.41), we find that the class of
resonant modes under consideration satisfies the equation
d?E(r) 1 dE(r) 2
+ = +

et a G E0 -0 (12.42)

Equation (12.42) is expressed in terms of total derivatives because there are only radial variations.
Equation (12.42) is a special form of the Bessel equation. The solution can be expressed in terms
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TABLE 12.1 Parameters of TM,,,, Modes

Mode k, w,

TMy0 2405/R,  2.405/\enR,
TM,0  5.520/R, 5.520/\/en Ry
TM 50 8.654/R, 8.654/\/en Rg
TM 40 11.792/R,  11.792/yen R,

of the zero-order Bessel functiong(kjr) and Yy(k.r). The Y, function is eliminated by the
requirement thak, has a finite value on the axis. The solution is

E,(r) = Egy Jo(kr) explo), (12.43)

whereE,, is the magnitude of the field on the axis.

The second boundary condition is that the electric field parallel to the metal wadl B must
be zero, oE,(R,,t) = 0. This implies that only certain values lgfgive valid solutions. Allowed
values ofk, are determined by the zeros gf(Jable 12.1). A plot oE,(r) for n =1 is given in
Figure 12.7. Substituting Eq. (12.43) into Eq. (12.42), the angular frequency is related to the

TMo1c
1 1

E (N/E,

By(N{Eov/en

05 | \\ ]

0 |
0 05 1
(riRo) .
Figure 12,7 Normalized electric axial electric field and azimuthal magnetic field as a function of
radius; TM,, mode in a cylindrical cavity.
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wavenumbek, by
®, = VK, (12.44)

Angular frequency values are tabulated in Table 12.1.
The magnetic field of the modes can be calculated from Eq. (12.34),

3Bl3t = - (VXE). (12.45)

Magnetic field is directed along thedirection. Assuming time variation expf) and substituting
from Eq. (12.43),

jo By, = dE,Jdr = E,, dJ(k r)/dr. (12.46)

Rewriting Eq. (12.46),
By, (1) = -j ven Ey, J,(k1).

Magnetic field variation for the Tly], mode is plotted in Figure 12.7. The magnetic field is zero
on the axis. Moving outward in radiuB, increases linearly. It is proportional to the integral of
axial displacement current from O toToward the outer radius, there is little additional
contribution of the displacement current. Theféctor [see Eq. (4.40)] dominates, and the
magnitude oB, decreases toward the wall.

12.4 PROPERTIES OF THE CYLINDRICAL RESONANT CAVITY

In this section, we consider some of the physical implications of the solutions for resonant
oscillations in a cylindrical cavity. The oscillations treated in the previous section are callgd TM
modes. The term TM (transverse magnetic) indicates that magnetic fields are normal to the
longitudinal direction. The other class of oscillations, TE modes, have longitudinal components of
B, andE, = 0. The first number in the subscript is the azimuthal mode number; it is zero for
azimuthally symmetric modes. The second number is the radial mode number. The radial mode
number minus one is the number of nodes in the radial variati@). dthe third number is the
longitudinal mode number. It is zero in the example of Section 12.3 beéguseonstant in the
direction. The wavenumber and frequency of JMnodes depends only d®, not d. This is not
generally true for other types of modes.

TM,,o modes are optimal for particle acceleration. The longitudinal electric field is uniform
along the propagation direction of the beam and its magnitude is maximum on axis. The
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Figure 12.8 Spatial variations of axial electric field and equivalent circuits for electromagnetic
oscillations in a cylindrical resonant cavity. Dashed line indicates displacement current, solid line
indicates real current flow in the cavity walls. (@) TM,, mode. (b) TM,, mode.

transverse magnetic field is zero on axis; this is important for electron acceleration where
transverse magnetic fields could deflect the beam. TM modes with nonzero longitudinal
wavenumber (= 0) have axial electric field of the forrg,(0,2) ~ sin(onx/d) ;itis clear that the
acceleration of particles crossing the cavity is reduced for these modes.

Figure 12.8 clarifies the nature of Tjy modes in terms of lumped circuit element
approximations. Displacement currents and real currents are indicated along with equivalent
circuit models. At values af greater than 1, the cavity is divided inbanteracting resonaritC
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circuits. The capacitance and inductance of each circuit is reduced by a factor of apout I/
therefore, the resonant frequency of the combination of elements is increased by a factor
close ton.

Resonant cavities are usually constructed from copper or copper-plated steel for the highest
conductivity. Nonetheless, effects of resistivity are significant because of the large reactive
current. Resistive energy loss from the flow of real current in the walls is concentrated in the
inductive regions of the cavity; hence, the circuit of Figure 12.3 is a good first-order model of an
imperfect cavity. Current penetrates into the wall a distance equal to the skin depth [Eq. (10.7)].
Power loss is calculated with the assumption that the modes approximate those of an ideal cavity.
The surface current per length on the wallgjs= B,(r,zt)/u, . Assuming that the current is
distributed over a skin depth, power loss can be summed over the surface of the cavity. Power
loss clearly depends on mode structure through the distribution of magnetic field®. Vidiee
for the TM,,, mode of a cylindrical resonant cavity is

0. _ b

m (12.48)

where the skin depthis a function of the frequency and wall material. In a copper cavity

oscillating atf = 1 GHz, the skin depth is only 2 pm. This means that the inner wall of the cavity
must be carefully plated or polished; otherwise, current flow will be severely perturbed by surface
irregularities lowering the cavit®. With a skin depth of 2 um, Eq. (12.48) impliefeavalue

of 3 x 10' in a cylindrical resonant cavity of radius 12 cm and length 4 cm. This is a very high

value compared to resonant circuits composed of lumped elements. Equation (12.32) implies that
the bandwidth for exciting a resonance

Afffy = 1/Q = 3 x 10°.

An rf power source that drives a resonant cavity must operate with very stable output frequency.
Forf, =1 GHz, the allowed frequency drift is less than 33 kHz.

The total power lost to the cavity walls can be determined from Eq. (12.24) if the stored energy
in the cavity, U, is known. The quantity can be calculated from Eq. (12.43) for thg,hbde;
we assume the calculation is performed at the time when magnetic fields are zero.

d Ro
U= f dz f 2nrdr (eEZ/2) JZ(2.405/Ry) = (nRZd) (sE;/2) J7(2.405). (12.49)
0 0

A cylindrical cavity can support a variety of resonant modes, generally at higher frequency than
the fundamental accelerating mode. Higher-order modes are generally undesirable. They do not
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-Figure 129 Field variations and distribution of capacitance and inductance in cylindrical
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_Figure 12.10 Variation of resonant angular frequency with. geometry of cylindrical rescnant
cavity for various low-frequency modes.

contribute to particle acceleration; the energy shunted into higher-order modes is wasted.
Sometimes, they interfere with particle acceleration; modes with transverse field components may
induce beam deflections and particle losses.

As an example of an alternate mode, consider the lowest frequency TE mode, thendée.
Figure 12.9 shows a sketch of the electric and magnetic fields. The displacement cuitlate®sc
from side to side across the diameter of the cavity. Magnetic fields are wrapped around the
displacement current and have components in the axial direction. The distribution of capacitance
and inductance for TE, oscillations is also shown in Figure 12.9. The mode frequency depends
on the cavity length (Fig. 12.10). Akincreases over the range« R, tb> R, ,thereisa
large increase in the capacitance of the cavity for displacement current flow across a diameter.
Thus, the resonant frequency drops. ldos R, , return current flows mainly back along the
circular wall of the cavity. Therefore, the ratio of electric to magnetic field energy in the cavity
approaches a constant value, independedt bfspection of Figure 2.10 shows that in long
cavities, the TE; mode has a lower frequency than the JMCare must be taken not to excite
the TE,, mode in parameter regions where thersi@de degeneracyl he term degeneracy
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indicates that two modes have the same resonant frequency. Mode selection is a major problem in
the complex structures used in linear ion accelerators. Generally, the cavities are long cylinders
with internal structures; the mode plot is considerably more complex than Figure 12.10. There is a
greater possibility for mode degeneracy and power coupling between modes. In some cases, it is
necessary to add metal structures to the cavity, which selectively damp competing modes.

12.5 POWER EXCHANGE WITH RESONANT CAVITIES

Power must be coupled into resonant cavities to maintain electromagnetic oscillations when there
is resistive damping or a beam load. The topic of power coupling to resonant cavities involves
detailed application of microwave theory. In this section, the approach is to achieve an
understanding of basic power coupling processes by studying three simple examples.

We have already been introduced to a cavity with the power feed located on axis. The feed
drives a beam and supplies energy lost to the cavity walls. In this case, power is electrically
coupled to the cavity because the current in the power feeds interacts predominantly with electric
fields. Although this geometry is never used for driving accelerator cavities, there is a practical
application of the inverse process of driving cavity oscillations by a beam. Figure 12.11a shows a
klystron, a microwave generator. An on-axis electron beam is injected across the cavity. The
electron beam has time-varying current with a strong Fourier component at the resonant
frequency of the cavityp,. We will consider only this component of the current and represent it
as a harmonic current source. The cavity has a fi@jteesulting from wall resistance and
extraction of microwave energy.

The complete circuit model for the Tjy) mode is shown in Figure 12.llb. The impedance
presented to the component of the driving beam current with frequersy

Z = (joL+R) / [(1-0’LC)+joRd. (12.50)
Assuming thatn = o, - 14/LC and that the cavity has hiQhEq. (12.50) reduces to

Z = LIRC = Z{IR = QZ, (12.51)

with Q given by Eq. (12.27). The impedance is resistive; the voltage oscillation induced is in
phase with the driving current so that energy extraction is maximized. Equation (12.51) shows
that the cavity acts as a step-down transformer when the power feed is on axis. Power at low
current and high voltage (impedanZé/R) drives a high current through resistariRe

In applications to high-energy accelerators, the aim is to use resonant cavities as step-up
transformers. Ideally, power should be inserted at low impedance and coupled to a low-current
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- Figure 12.11  Electromagnetic oscillations in resonant cavity driven by modulated beam on axis
(klystron). (a) Geometry. (b) Equivalent circuit.

beam at high voltage. This process is accomplished when enarggisetically couplethto a
cavity. With magnetic coupling, the power input is close to the outer radius of the cavity;
therefore, interaction is predominantly through magnetic fields. A method for coupling energy to
the TM,;,, mode is illustrated in Figure 12.12a. A loop is formed on the end of a transmission line.
The loop is orientated to encircle the azimuthal magnetic flux of thg,Jilode. (A loop
optimized to drive the TE,; mode would be rotated 9Go couple to radial magnetic fields.)

We shall first consider the inverse problem of extracting the energy of g,0¢€cillation
through the loop. Assume that the loop couples only a small fraction of the cavity energy per
oscillation period. In this case, the magnetic fields of the cavity are close to the unperturbed
distribution. The magnetic field at the loop positign,is

B(t) = By(p,t) cosmt, (12.52)

whereBy(p,t) is a slowly varying function of time. The spatial variation is given by Eq. (12.47).
The loop is attached to a transmission line that is terminated by a matched rBsistor

The voltage induced at the loop output depends on whether the loop current significantly affects
the magnetic flux inside the loop. As we saw in the discussion of the Rogowski loop (Section
9.14), the magnetic field inside the loop is close to the applied field B« 1/, , thisre
the loop inductance anddy/is the time scale for magnetic field variations. In this limit, the
magnitude of the induced voltage around a loop of #&eaV = Aw B,. The extracted power is
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Figure 12.12 Resonant cavity interactions with magnetic coupling loop. () Geometry of loop set
up to extract energy from cavity. (b) Equivalent circuit model to give input impedance of loop
coupled to cavity. (¢) Circuit of part b at resonance {transformer replaced by its equivalent
circuit).

P = (ABw)2R (12.53)

Power coupled out of the cavity increasesA&sn this regime. At the opposite extreme
(L/R » 1km,), the loop voltage is shifted 90n phase with respect to the magnetic field.
Application of Eq. (9.124) shows that the extracted power is approximately

P = [AB/(L/R]%2R (12.54)

Because the loop inductance is proportiona\tdhe power is independent of the loop area in
this limit. Increasing Aincreases perturbations of the cavity modes without increasing power
output. The optimum size for the coupling loop corresponds to maximum power transfer with
minimum perturbation, ot/R ~ 1/o
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Note that in Egs. (12.53) and (12.54), power loss from the cavity is proportioigaf tmd is
therefore proportional to the stored energy in the cautyT he quantityU is governed by the
equation

du/dt ~ -U. (12.55)

The stored energy decays exponentially; therefore, losses to the loop can be character@ed by a
factorQ,. If there are also resistive losses in the cavity characterizégl then the total cavity)
IS

Q= (11Q + Q)™ (12.56)

We can now proceed to develop a simple circuit model to describe power transfer through a
magnetically coupled loop into a cavity with a resistive load on axis. The treatment is based on
our study of the transformer (Section 9.2). The equivalent circuit model is illustrated in Figure
12.12b. The quantitiR represents the on-axis load. We consider the loop as the primary and the
flow of current around the outside of the cavity as the secondary. The primary and secondary are
linked together through shared magnetic flux. The loop area is much smaller than the
cross-section area occupied by cavity magnetic fields. An alternate view of this situation is that
there is a large secondary inductance, only part of which is linked to the primary.

Following the derivation of Section 9.2, we can construct the equivalent circuit seen from the
primary input (Fig. 12.12c). The part of the cavity magnetic field enclosed in the loop is
represented bl; the secondary series inductance islL.-\We assume that energy transfer per
oscillation period is small and thaf, « L . Therefore, the magnetic fields are close to those of an
unperturbed cavity. This assumption allows a simple estimalte of

To begin, we neglect the effect of the shunt inductdnae the circuit of Figure 12.12c and
calculate the impedance the cavity presents at the loop input. The result is

Z = [joL + R(1-0?LC)] / (1+jwRC). (12.57)

Damping must be small for an oscillatory solution. This is true if the load resistance is high, or
R » /LC. Assuming this limit and taking = »,, Eq. (12.57) becomes

Z = R [(L/C)/R2]. (12.58)

Equation (12.58) shows that the cavity presents a purely resistive load with impedance much
smaller tharR. The combination of coupling loop and cavity act as a step-up transformer.

We must still consider the effect of the primary inductance in the circuit of Figure 12.12c. The
best match to typical power sources occurs when the total input impedance is resistive. A simple
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method of matching is to add a shunt capactpmwith a value chosen so th@iL, = LC. In this

case, the parallel combination lgfandC, has infinite impedance at resonance, and the total load

is (L/C)/R. Matching can also be performed by adjustment of the transmission fine leading to the
cavity. We shall see in Section 12.6 that transmission lines can act as impedance transformers. The
total impedance will appear to be a pure resistance at the generator for input at a specific
frequency if the generator is connected to the cavity through a transmission line of the

proper length and characteristic impedance.

12.6 TRANSMISSION LINES IN THE FREQUENCY DOMAIN

In the treatment of the transmission line in Section 9.8, we considered propagating voltage pulses
with arbitrary waveform. The pulses can be resolved into frequency components by Fourier
analysis. If the waveform is limited to a single frequency, the description of electromagnetic signal
propagation on a transmission line is considerably simplified. In complex exponential notation,
current is proportional to voltage. The proportionality constant is a complex number, containing
information on wave amplitude and phase. The advantage is that wave propagation problems can
be solved algebraically, rather than through differential equations.

Voltage waveforms in a transmission line move at a veloeity 1//sp along the line. A
harmonic disturbance in a transmission line may have components that travel in the positive or
negative directions. A single-frequency voltage oscillation measured by a stationary observer has
the form

V(zt) = V. expo(t-z/v)] + V_ expo(t+z/V)]. (12.59)

Equation (12.59) states that points of consdmove along the line at spe&dn either the

positive or negative directions. As we found in Section 9.9, the current associated with a wave
traveling in either the positive or negative direction is proportional to the voltage. The constant of
proportionality is a real numbeZ,. The total current associated with the voltage disturbance of
Eq. (12.59) is

l(zt) = (V./Z) exp[o(t-zVv)] - (V./Z) exp]o(t+2V)]. (12.60)

Note the minus sign in the second term of Eq. (12.60). It is included to preserve the convention
that current is positive when positive waves move in théditection. A voltage wave with

positive voltage moving in thez-direction has negative current. The total impedance at a point is,
by definition

Z = V(zt)/I(z1). (12.61)
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Figure 12.13 Incident, transmitted, and reflected waves at junction of two transmission lines.

If there are components M z,1) moving in both the positive and negative directiozisnay not
be a real number. Phase differences arise because the &(rammfVV.may not be in phase with

the sum ofl, andl .

We will illustrate transmission line properties in the frequency-domain by the calculation of
wave reflections at a discontinuity. The geometry is illustrated in Figure 12.13. Two infinite length
transmission lines are connected at z = 0. Voltage waves at angfriequency travel down the
line with characteristic impedan@s toward the line with impedancg . If Z, = Z,, the waves
travel onward with no change and disappear down the second liBe#I¥Z,, we must consider
the possibility that wave reflections take place at the discontinuity. In this case, three wave
components must be included:

1. The incident voltage wave, of form expjm(t-z/v)]  is specified. The current of the
wave is(V /Z )expo(t-zVv)] .

2. Some of the incident wave energy may continue through the connection into the second
line. The wave moves in thez#lirection and is represented Myexpfjo(t-z/v/)] . The

current of theransmitted wavés (V,/Z,)exp[jo(t-z/v’)] . There is no negatively directed
wave in the second line because the line has infinite length.

3. Some wave energy may be reflected at the connection, leading to a backward-directed
wave in the first fine. The voltage and current of the reflected wav¥ ae|jw(t-2/V)]
and -(V /Z )expjo(t-2/v)] .

The magnitudes of the transmitted and reflected waves are related to the incident wave and the
properties of the lines by applying the following conditions at the connection Eon0j:
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1.The voltage in the first line must equal the voltage in the second line at the connection.
2. All charge that flows into the connection must flow out.

The two conditions can be expressed mathematically in terms of the incident, transmitted, and
reflected waves.

V, expfot) + V_ expfot) =V, exp(ot), (12.62)

(V./Z) explot) — (V./Z)) explot) = (V,/Z,) expfot). (12.63)

Canceling the time dependence, Egs. (12.62) and (12.63) can be solved to relate the reflected and
transmitted voltages to the incident voltage:

p=(WNIN)=(Z-2)(Z+Z), (12.64)

T = (VIV) = 2Z/(Z,+Z). (12.65)

Equations (12.64) and (12.65) define the reflection coeffigeaind the transmission coefficient

1. The results are independent of frequency; therefore, they apply to transmission and reflection of
voltage pulses with many frequency, components. Finally, Egs. (12.64) and (12.65) also hold for
reflection and absorption of waves at a resistive termination, because an infinite length
transmission line is indistinguishable from a resistor i&th Z, .

A short-circuit termination hag = 0. In this casep = -1 andt = 0. The wave is reflected with
inverted polarity, in agreement with Section 9.10. There is no transmitted wave. ¥yhenc
there is again no transmitted wave and the reflected wave has the same voltage as the incident
wave. Finally, ifZ, = Z,, there is no reflected wave and- 1; the lines are matched.

As a final topic, we consider transformations of impedance along a transmission line. As shown
in Figure 12.14, assume there is a Idadcat z= 0 at the end of a transmission line of lengémd
characteristic impedana®. The load may consist of any combination of resistors, inductors, and
capacitors; therefor&, may be a complex number. A power source, located at the point z = -
produces a harmonic input voltagéexp(jt). The goal is to determine how much current the
source must supply in order to support the input voltage. This is equivalent to calculating the
impedance Z().

The impedance at the generator is generally different #pnhn this sense, the transmission line
is animpedance transformef his property is useful for matching power generators to loads that
contain reactive elements. In this section, we shall find a mathematical expression for the
transformed impedance. In the next section, we shall investigate some of the implications of the
result .
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Figure 12.14 Connection of ac voltage generator to a load through transmission line.

Voltage waves are represented as in Eq. (12.59). Both a positive wave traveling from the
generator to the load and a reflected wave must be included. All time variations have the form
exp(jwt). Factoring out the time dependence, the voltage and current @tare

V() = V. + V, (12.66)

10) = (V.JZ) - (V.1Z,). (12.67)

The voltage and current at z Fare
V(-1) = V, exp(+jlo/v) + V_ exp(-jlo/v), (12.68)

I(-1) = (V./Z) exp(loi) - (V./Z) exp(-jlol). (12.69)

Furthermore, the treatment of reflections at a line termination [Eq. (12.64)] implies that
VIV, = (Z-Z2)(Z, +Z). (12.70)

Taking Z(-1) = V(-1)/I(-1) , and substituting from q. (12.70), we find that
expllo/v) + (Z -Z )exp(-lo/MI(Z +Z )
expllo/v) - (Z -Z )exp(-lo/MI(Z +Z )

Z(-1) = Z,

. Z [exp(lo/iv) + exp(-jlov)] + Z [exp(lo/v) - exp(jlo/v)]
= Z, Z [exp(lov) - exp(jloiv)] + Z [exp(loiv) + exp(-jlo/v)] (12.71)

Z, cos(zl/) + jz, sin(2u/))
° Z, cos(al/) + jz, sin(2d/n)
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wherew/v = 2a/L. . In summary, the expressions of Eq. (12.71) give the impedance at the input
of a transmission line of lengthterminated by a load, .

12.7 TRANSMISSION LINE TREATMENT OF THE RESONANT CAVITY

In this section, the formula for the transformation of impedance by a transmission line [EQ.
(12.71)] is applied to problems related to resonant cavities. To begin, consider terminations at the
end of a transmission line with characteristic impedafycend lengtH. The terminatior¥, is
located atz = 0 and the voltage generatorzat -l. If Z is a resistor witlPR= 27, Eq. (1 2.71)
reduces to Z() = Z,, independent of the length of the line. In this case, there is no reflected wave,
The important property of the matched transmission line is that the voltage wave at the
termination is identical to the input voltage wave delayed by time intéfwaliatched lines are
used to conduct diapostic signals without distortion.

Another interesting case is the short-circuit terminatigns 0. The impedance at the line input
is

Z(-1) = jz, tan(2u/2). (12.72)
The input impedance is zero whén= 0, A/2, 3J/2,... . Aninteresting result is that the shorted
line has infinite input impedance (open circuit) when

| = M4, /4, B\4,... (12.73)

A line with length given by Eq. (12.73) is calledqaiarter wave line

Figure 12.15 illustrates the analogy between a cylindrical resonant cavity and a quarter wave
line. A shorted radial transmission line of lendithas power input at frequenayat the inner
diameter., Power flow is similar to that of Figure 12.2. If the frequency of the input power
matches one of the resonant frequencies of the line, then the line has an infinite impedance and
power is transferred completely to the load on axis. The resonant frequencies of the radial
transmission line are

®, = nv/2, o, = 3nv/2, o, = 5av/2l, ... . (12.74)

1

These frequencies differ somewhat from those of Table 12.1 because of geometric differences
between the cavities.

The quarter wave line has positive and negative-going waves. The positive wave reflects at the
short-circuit termination giving a negative-going wave with 1@@ase shift. The voltages of the
waves subtract at the termination and add at the input (z ¥he summation of the voltage
waves is a standing-wave pattern:
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Figure 12.15 Resonant acceleration cavity formed from shorted radial transmission line.

V(zt) =V, sin(-nz/2l) expot).

At resonance, the current of the two waves atlazssequal and opposite. The line draws no

current and has infinite impedance. At angular frequencies belpwmspection of Eq. (12.72)

shows tha® ~ +j; thus, the shorted transmission line acts like an inductor. For frequencies above
w,, the line has Z- -j; it acts as a capacitive load. This behavior repeats cyclically about higher
resonant frequencies.

A common application of transmission lines is power matching from a harmonic voltage
generator to a load containing reactive elements. We have already studied one example of power
matching, coupling of energy into a resonant cavity by a magnetic loop (Section 12.5). Another
example is illustrated in Figure 12.16. An ac generator drivescarleration gap. Assume, for
simplicity, that the beam load is modeled as a resi®0Fhe generator efficiency is optimized
when the total load is resistive. If the load has reactive components, the generator must supply
displacement currents that lead to internal power dissipation. Reactances have significant effects
at high frequency. For instance, displacement current is transported through the capacitance
between the electrodes of the accelerating gapsThe displacement current is comparable to
the load current whem ~ 1/RC@J . In principle, it is unnecessary for the power supply to support
displacement currents because energy is not absorbed by reactances. The strategy is to add circuit
elements than can support the reactive current, leaving the generator to supply power only to the
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Figure 12.16 Power malching of harmonic generators to loads with reactive and resistive
components. Geometry and equivalent circuit of acceleration gap at high frequency.

resistive load. This is accomplished in the acceleration gap by adding a shunt inductance with
valueL = 1/03§Cg , Wheraw, is the generator frequency. The improvement of the Wideroe linac
by the addition of resonant cavities (Section 14.2) is an example of this type of matching.

Section 12.5 shows that a coupling loop in a resonant cavity is a resistive load at the driving
frequency if the proper shunt capacitance is added. Matching can also be accomplished by
adjusting the length of the transmission line connecting the generator to the loop. At certain
values of line length, the reactances of the transmission line act in concert with the reactances of
the loop to support displacement current internally. The procedure for finding the correct length
consists of adjusting parameters in Eq. (12.71) wite@ual to the loop impedance until the
imaginary part of the right-hand side is equal to zero. In this circumstance, the generator sees a
purely resistive load. The search for a match is aided by use of the Smith chart; the procedure is
reviewed in most texts on microwaves.

12.8 WAVEGUIDES

Resonant cavities have finite extent in the axial direction. Electromagnetic waves are reflected at
the axial boundaries, giving rise to the standing-wave patterns that constitute resonant modes. We
shall remove the boundaries in this section and study electromagnetic oscillations that travel in the
axial direction. A structure that contains a propagating electromagnetic wave is called a
waveguideConsideration is limited to metal structures with uniform cross section and infinite

extent in thez direction. In particular, we will concentrate on the cylindrical waveguide, which is
simply a hollow tube.
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Waveguides transport electromagnetic energy. Waveguides are often used in accelerators to
couple power from a microwave source to resonant cavities. Furthermore, it is possible to
transport particle beams in a waveguide in synchronism with the wave phase velocity so that they
continually gain energy. Waveguides used for direct particle acceleration must support slow
waves with phase velocity equal to or less than the speed of light. Slow-wave structures have
complex boundaries that vary periodically in the axial direction; the treatment of slow waves is
deferred to Section 12.9.

Single-frequency waves in a guide have fields of the fexpjj(ot-k2]  explj(wt+k2)]
Electromagnetic oscillations move along the waveguide at veladityln contrast to
transmission lines, waveguides do not have a center conductor. This difference influences the
nature of propagating waves in the following ways:

1. The phase velocity in a waveguide varies with frequency. A structure with
frequency-dependent phase velocity exhibitpersion Propagation in transmission lines
is dispersionless.

2. Waves of. any frequency can propagate in a transmission line. In contrast,
low-frequency waves cannot propagate in a waveguide. The limiting frequency is called
the cutoff frequency

3. The phase velocity of waves in a waveguide is greater than the speed of light. This does
not violate the principles of relativity since information can be carried only by modulation

of wave amplitude or frequency. The propagation velocity of frequency modulations is the
group velocity, which is always less than the speed of light in a waveguide.

The properties of waveguides are easily demonstrated by a lumped circuit element analogy. We
can generate a circuit model for a waveguide by starting from the transmission line model
introduced in Section 9.9. A coaxial transmission line is illustrated in Figure 12.17a. At
frequencies low compared t/(R -R)y/ep | the field pattern is the familiar one with radial

electric fields and azimuthal magnetic fields. This field is a TEM (transverse electric and magnetic)
mode; both the electric and magnetic fields are transverse to the direction of propagation.
Longitudinal current is purely real, carried by the center conductor. Displacement current flows
radially; longitudinal voltage differences result from inductive fields. The equivalent circuit model
for a section of line is shown in Figure 12.17a.

The field pattern may be modified when the radius of the center conductor is reduced and the
frequency is increased. Consider the limit where the wavelength of the electromagnetic
disturbancej) = 2r/k , is comparable to or less than the outer radius of the line. In this case,
voltage varies along the high-inductance center conductor on a lengthxdRal&lectric field
lines may directly connect regions along the outer conductor (Fig. 12.17b). The field pattern is no
longer a TEM mode because there are longitudinal components of electric field. Furthermore, a
portion of the longitudinal current flow in the transmission line is carried by displacement current.
An equivalent circuit model for the coaxial transmission line at high frequency is shown in Figure
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Figure 12.17 Propagating waves in coaxial transmission lines and circular waveguides, electric
field patterns, and equivalent circuits. (¢) TEM mode in transmission line, low frequency. (&) TM
mode in transmission line, high frequency. (¢} TM,, mode in waveguide.

12.17b. The capacitance between the inner and outer conduCipisreduced. The flow of real
current through inductdk, is supplemented by axial displacement current through the series
combination ofC, andL,. The inductancé, is included because displacement currents generate
magnetic fields.

As the diameter of the center conductor is reduced, increasjraggreater fraction of the axial
current is carried by displacement current. Timt whereR = 0 is illustrated in Figure 12.17c.
All axial current flow is via displacement currenmt; is removed from the mode. The field pattern
and equivalent circuit model are shown. We can use the impedance formalism to find the
appropriate wave equations for the circuit of Figure 12.17c. Assume that there is a wave
moving in the + z direction and take variations of voltage and current as
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V = V. _ exp(ot-k2)] and | =1, exp(ot-k2)].

The waveguide is separated into sections of ledgthT he inductance of a sectionlig\z wherel,

is the inductance per unit length. The quan@iyequalsc,Az, wherec, is the shunt capacitance

per unit length in farads per meter. The series capacitance is inversely proportional to length, so
that C, = c,Az, whereg, is the series capacitance of a unit length. The quactinas units of
farad-meters. The voltage drop across an element is the impedance of the element multiplied by
the current or

AV = -1 (-jAZoc, + jol,A2),

or

VIoz - - (Hjlwe, + jol,) | (12.76)

The change in longitudinal current occurring over an element is equal to the current that is lost
throughC, to ground

Al = -jc,Azo V,

or

allez = —jwc, V. (12.77)

Equations (12.76) and (12.77) can be combined to the single-wave equation

VIzZ2 = k2 V = joc, (-jloc, + jol) V = (cfc, - 03.c) V. (12.78)

Solving for k and lettingw_ = 1//1,c, , we find that

l )

k = /e, ool - 1. (12.79)

Equation (12.79) relates the wavelength of the electromagnetic disturbance in the cylindrical
waveguide to the frequency of the waves. Equation (12.79) is a dispersion relationship. It
determines the phase velocity of waves in the guide as a function of frequency:

olk = fclc, o, /1 - oo
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Note that the phase velocity is dispersive. It is minimum at high frequency and approaches infinity
as o=, . Furthermore, there iscatoff frequencyow,, below which waves cannot propagate. The
wavenumber is imaginary belowy,. This implies that the amplitude of low-frequency waves
decreases along the guide. Low-frequency waves are reflected near the input of the waveguide;
the waveguide appears to be a short circuit.

The above circuit model applies to a propagating wave in thg, hivbde. The term TM refers
to the fact that magnetic fields are transverse; only electric fields have a longitudinal component.
The leading zero indicates that there is azimuthal symmetry; the 1 indicates that the mode has the
simplest possible radial variation of fields. There are an infinite number of higher-order modes that
can occur in a cylindrical transmission line. We will concentrate on thg, Tddde because it has
the optimum field variations for particle acceleration. The mathematical methods can easily be
extended to other modes. We will now calculate properties of azimuthally symmetric modes in a
cylindrical waveguide by direct solution of the field equations. Again, we seek propagating
disturbances of the form

E(r8,zt) = E(r,0) exp[(ot-k2)], (12.80)
B(r,0,zt) = B(r,0) exp[(ot-k2)]. (12.81)

With the above variation and the condition that there are no free charges or current in the
waveguide, the Maxwell equations [Egs. (3.11) and (3.12)] are

V xE = -joB, (12.82)
V x B = -joepE. (12.83)

Equations (12.82) and (12.83) can be combined to give the two wave equations

VE = -k’ E, (12.84)

VB = -k’ B. (12.85)

wherek, = et o = o/v .
The quantityk, is thefree-space wavenumbetris equal to z/A,, wherel, is the wavelength of
electromagnetic waves in the filling medium of the waveguide in the absence of the boundaries.
In principle, either Eq. (12.84) or (12.85) could be solved for the three componefterds,
and then the corresponding componentB @ir E found through Eq. (12.82) or (12.83). The
process is complicated by the boundary conditions that must be satisfied at the wallRadius,
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E(R) =0, (12.86)
B(R) = 0. (12.87)
Equations (12.86) and (12.87) refer to the vector sum of components; the boundary conditions

couple the equations for different components. An organized approach is necessary to make the
calculation tractable.

We will treat only solutions with azimuthal symmetry. Settitfgo =0, the component forms
of Egs. (12.82) and (12.83) are
JKE, = -joB,, (12.88)
(1/r) S(rEy)/or = -joB,, (12.89)
-JKE, - 0EJor = -joB,, (12.90)
jkB, = -j(k o) E,, (12.91)

(1/r) o(rBy)lor = —j(kozloa) E, (12.92)
-jkB, - aBJor = -j(k’lw) E, (12.93)

These equations can be manipulated algebraically so that the transverse fields are proportional to
derivatives of the longitudinal components:

B, = -jk (@BJar) / (k& - k?), (12.94)
E, = -jk (GEJar) / (K - k?), (12.95)
B, = -j(k%w) (GEJar) I (K} - k?), (12.96)
E, = -jo (@BJar) I (K - k2. (12.97)

Notice that there is no solution if bo®, andE, equal zero; a waveguide cannot support a TEM
mode. Equations (12.94)-(12.97) suggest a method to simplify the boundary conditions on the
wave equations. Solutions are divided into two categories: waves thaEhave and waves that
haveB, = 0. The first type is called a TE wave, and the second type is called a TM wave. The first
type has transverse field componeBtandE,. The only component of magnetic field

perpendicular to the metal wall&. SettingB, = 0 at the wall implies the simple, decoupled
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boundary condition
dB,(Ry)/or = 0. (12.98)

Equation (1 2.98) implies th&,(R,) = 0 andB,(R,) = 0. The wave equation for the axial
component oB [EQ. (12.85)] can be solved easily with the above boundary condition. @yen
the other field components can be calculated from Egs. (12.94) and (12.97).

For TM modes, the transverse field componentska@ndB,. The only component of electric
field parallel to the wall i€, so that the boundary condition is

E(R) = O. (12.99)

Equation (12.84) can be used to figg then the transverse field components are determined

from Egs. (12.95) and (12.96). The solutions for TE and TM waves are independent. Therefore,
any solution with botlg, andB, can be generated as a linear combination of TE and TM waves.
The wave equation fdg, of a TM mode is

V’E, = (1) (dlor) (BEJor) - K’E, = -k’ E,, (12.100)

0 z

with E,(R)) = 0. The longitudinal contribution to the Laplacian follows from the assumed form of
the propagating wave solution. Equation (12.100) is a special form of the Bessel equation. The
solution is

E(rzt) = E, JO(,/kj—er) explj(ot-k2)] (12.101)

The boundary condition of Eq. (12.99) constraints the wavenumber in terms of the free-space
wavenumber:
k? - k? = x’IR? (12.102)

0 n 0’

wherex, = 2.405,5.520,... . Equation (12.102) yields the following dispersion relationship for
TM,, modes in a cylindrical waveguide:

k = yeno? - xRS, (12.103)

The mathematical solution has a number of physical implications. First, the wavenumber of
low-frequency waves is imaginary so there is no propagation. The cutoff frequency of the TM
mode is
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®, = 2.405//epR . (12.104)

Near cutoff, the wavelength in the guide approaches infinity. The free-space wavelength of a
TM,, electromagnetic wave at frequensyis A, = 2.61R . The free-space wavelength is about
equal to the waveguide diameter; waves with longer wavelengths are shorted out by the metal
waveguide walls.

The wavelength in the guide is

M= 11 - ol (12.105)

The phase velocity is

ok = 1 //ep ,/1 - 0lo? (12.106)

Note that the phase velocity in a vacuum waveguide is always greater than the speed of light.
The solution of the field equations indicates that there are higher-ordgrwawes. The cutoff
frequency for these modes is higher. In the frequency rad@s//epR,  5.580//cpR, , the
only TM mode that can propagate is the JMhode. On the other hand, a complete solution for
all modes shows that the Tghas the cutoff frequency, = 1.841@R0 which is lower than
that of the TM,; mode. Precautions must be taken not to excite thg if&de because: 1) the
waves consume rf power without contributing to particle acceleration and 2) the on-axis radial
electric and magnetic field components can cause deflections of the charged particle beam.

12.9 SLOW-WAVE STRUCTURES

The guided waves discussed in Section 12.8 cannot be used for particle acceleration because they
have phase velocity greater tharlt is necessary to generate slow waves with phase velocity less
thanc. It is easy to show that slow waves cannot propagate in waveguides with simple
boundaries. Consider, for instance, waves with electric field of the form(@tp[k2)] with
o/k < cin a uniform cylindrical pipe of radiuR,. Because the wave velocity is assumed less than
the speed of light, we can make a transformation to a frame moving at apeedk. In this
frame, the wall is unchanged and the wave appears to stand still. In the wave rest frame the
electric field is static. Because there are no displacement currents, there is no magnetic field. The
electrostatic field must be derivable from a potential. This is not consistent with the fact that the
wave is surrounded by a metal pipe at constant potential. The only possible static field solution
inside the pipe i€ = 0.

Slow waves can propagate when the waveguide has periodic boundaries. The properties of slow
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Figure 12.18 Slow-wave structures. {(4) Electric and magnetic fields of TEM mode in coaxial
transmission line. () Modified TEM mode in coaxial transmission line with capacitive loading. (¢)
Iris-loaded waveguide.

waves can be derived by a formal mathematical treatment of wave solutions in a periodic

structure. In this section, we shall take a more physical approach, examining some special cases to
understand how periodic structures support the boundary conditions consistent with slow waves.
To begin, we consider the effects of the addition of periodic structures to the transmission line of
Figure 12.18a. If the region between electrodes is a vacuum, TEM waves propagateékwith

c. The line has a capacitan€@and inductancé per unit length given by Egs. (9.71) and (9.72).

We found in Section 9.8 that the phase velocity of waves in a transmission line is related to these
guantities by

w/k = 14/LC. (12.107)

Consider reconstructing the line as shown in Figure 12.18b. Annular metal piecedrisdisdre
attached to the outer conductor. The irises have inner ré&darsl spacing.

The electric field patterns for a TEM wave are sketched in Figure 12.18b in the limit that the
wavelength is long compared o The magnetic fields are almost identical to those of the
standard transmission line except for field exclusion from the irises; this effect is small if the irises
are thin. In contrast, radial electric fields cannot penetrate into the region between irises. The
electric fields are restricted to the region between the inner conductor and inner radius of the
irises. The result is that the inductance per unit length is almost unchangedijdssignificantly
increased. The capacitance per unit length is approximately
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Figure 12.19 Phase velocity and characteristic impedance of capacitively loaded transmission line
as function of R/R;. (¢ = g, R;/R, = 0.25).

C = 2re / IN(RIR). (12.108)

The phase velocity as a functionRfR, is

ok = ¢ [ In(RR) / M(R/R). (12.109)

The characteristic impedance for TEM waves becomes

Z = yLIC = Z, J NR/R) / IN(RR). (12.109)

The phase velocity and characteristic impedance are plotted in Figure 12.19 as a funBfign of
Note the following features:

1.The phase velocity decreases with increasing volume enclosed between the irises.
2.The phase velocity is less than the speed of light.

3.The characteristic impedance decreases with smaller iris inner radius.
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wet = 0
wgt = 1.2
wpt = 2.4

Figure 12.20 Flectric field amplitudes in array of individually phased resonant cavities (27
cavities, with oscillations separated by constant phase difference A¢ = —0.3 rad). Plots at times
given by wyr = 0,1.2,24,3.6,4.8, 6.
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Figure 12.20 (Continued).
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4.In the long wavelength limitX » 6 ), the phase velocity is independent of frequency. This is not
true wheni < & . A general treatment of the capacitively loaded transmission line is given in
Section 12.10.

A similar approach can be used to describe propagation gf fddes in an iris-loaded
waveguide (Fig. 12.18c). At long wavelength the inductdnas almost unchanged by the
presence of irises, but the capacitanCeandC, of the lumped element model is increased. The
phase velocity is reduced. Depending on the geometry of the irises, the phase velocity may be
pulled belowc. Capacitive loading also reduces the cutoff frequencyn the limit of strong
loading (R « R, ), the cutoff frequency for Tjlwaves approaches the frequency of the,{,M
mode in a cylindrical resonant cavity of radiBs

The following model demonstrates how the irises of a loaded waveguide produce the proper
boundary fields to support an electrostatic field pattern in the rest frame of a slow wave. Consider
an iris-loaded waveguide in the limit th& « R, (Fig. 12.18c). The sections between irises are
similar to cylindrical resonant cavities. A traveling wave moves along the axis through the small
holes; this wave carries little energy and has negligible effect on the individual cavities. Assume
that cavities are driven in the TJy) mode by external power feeds; the phase of the
electromagnetic oscillation can be adjustedach cavity. Such a geometry is called an
individually phased cavity arrayin the limit A » 6, the cavity fields aR are almost pur€&, fields.
These fields can be matched to the longitudinal electric field of a traveling wave to determine the
wave properties.

Assume thab is longitudinally uniform and that there is a constant phase differengdetween
adjacent cavities. The input voltage has frequency 2.40%/R . Figure 12.20 is a plot of
electric field atR in a number of adjacent cavities separated by a constant phase interval at different
times. Observe that the field at a particular time is a finite difference approximation to a sine wave
with wavelength

A = 218/A¢. (12.111)

Comparison of plots at different times shows that the waveform moves in the
+z direction at velocity

v(phasg = o /k = (2.405A¢) (3/R)) C. (12.112)

The phase velocity is high at long wavelength. A slow wave results when
Ag > 2.4055/R, or A < R,/2.405. (12.113)

In the rest frame of a slow wave, the boundary electric field? approximate a static sinusoidal
field pattern. Although the fields oscillate inside the individual cavities between irises, the electric
field at R appears to be static to an observer moving at velegiky Magnetic fields are confined
within the cavities. The reactive boundaries, therefore, are consistent with an axial variation of
electrostatic potential in the wave rest frame.
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12.10 DISPERSION RELATIONSHIP FOR THE IRIS-LOADED
WAVEGUIDE

The dispersion relationship = w(k) is an equation relating frequency and wavenumber for a
propagating wave. In this section, we shall consider the implications of dispersion relationships for
electromagnetic waves propagating in metal structures. We are already familiar with one quantity
derived from the dispersion relationship, the phase velogiky The group velocity, is another
important parameter. It is the propagation velocity for modulations of frequency or amplitude.
Waves with constant amplitude and frequency cannot carry information; information is conveyed
by changes in the wave properties. Therefore, the group velocity is the velocity for information
transmission. The group velocity is given by

v, = doldk (12.114)

Equation (12.114) can be derived through the calculation of the motion of a pulsed disturbance
consisting of a spectrum of wave components. The pulse is Fourier analyzed into frequency
components; a Fourier synthesis after a time interval shows that the centroid of the pulse moves if
the wavenumber varies with frequency.

As an example of group velocity, consider TEM electromagnetic waves in a transmission line.
Frequency and wavenumber are related simplwby k/y/su = kv . Both the phase and group
velocity are equal to the speed of light in the medium. There is no dispersion; all frequency
components of a pulse move at the same rate through the line; therefore, the pulse translates with
no distortion. Waves in waveguides have dispersion. In this case, the components of a pulse move
at different velocities and a pulse widens as it propagates.

The group velocity has a second important physical interpretation. In most circumstances, the
group velocity is equal to the flux of energy in a wave along the direction of propagation divided
by the electromagnetic energy density. Therefore, group velocity usually characterizes energy
transport in a wave.

Dispersion relationships are often represented as graphs@fsusk. In this section, we shall
constructn-k plots for a number of wave transport structures, including the iris-loaded waveguide.
The straight-line plot of Figure 12.21a corresponds to TEM waves in a vacuum transmission line.
The phase velocity is the slope of a line connecting a point on the dispersion curve to the origin.
The group velocity is the slope of the dispersion curve. In this case, both velocities are egjual to
at all frequencies.

Figure 12.21b shows an+-k plot for waves passing along the axis of an array of individually
phased circular cavities with small coupling holes. The curve is plotted for an outer radiys of
0.3 m and a distance of 0.05 m between irises. The frequency depends only on the cavity properties
not the wavelength of the weak coupling wave. Only discrete frequencies correspond ing to cavity
resonances are allowed, The reactive boundary conditions for azimuthally symmetric slow waves
can be generated by any T)Mmode. Choice of the relative phaep, determinek for the
propagating wave. Phase velocity and group velocity are indicated in Figure 12.21b. The line
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Figure 12.21 Dispersion relationships. (a) TEM waves in a transmission line. (#) Weakly
coupled waves between individually phased cavities with constant phase difference, TM,,,,, cavity
modes. Point indicates possible conditions for a slow wave. {¢) TM,, modes in a circular
waveguide.

corresponding ta/k = ¢ has also been plotted. At short wavelengths (l&)géhe phase velocity
can be less thann Note that since» is not a function ok, the group velocity is zero. Therefore,
the traveling wave does not transport energy between the cavities. This is consistent with the
assumption of small coupling holes. The physical model of Section 12.8 is not applicable for
wavelengths less thard2this limit has also been indicated on thé& graph.

The third example is the uniform circular waveguide. Figure 12.21c shows a plot of Eq. (12.103)
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Figflre_ 12.22 Modeling capacitively loaded transmission line as uniform transmission line with
periodic shunt capacitance. (2) Geometry. (») Equivalent circuit.

for a choice oR, = 0.3 m. Curves are included for the TMTM,,, and TM,; modes. Observe that
wavenumbers are undefined for frequency less thaithe group velocity approaches zero in the
limit that ® = o_,. When o = o_ energy cannot be transported into the waveg@dause =
0. The group velocity is nonzero at short wavelengths (l&jg&he boundaries have little effect
wheni « R ;in this limit, thew-k plot approaches that of free-space wavw#g,= c. At long
wavelength (smak), the oscillation frequencies approach those of]vhodes in an axially
bounded cavity with radiuR. The phase velocity in a waveguide is minimum at long wavelength;
it can never be less tham

As a fourth example, consider the dispersion relationship for waves propagating in the
capacitively loaded transmission line of Figure 12.22a. This example illustrates some general
properties of waves in periodic structures and gives an opportunity to examine methods for
analyzing periodic structures mathematically. The capacitively loaded transmission line can be
considered as a transmission line with periodic impedance discontinuities. The discontinuities arise
from the capacitance between the irises and the center conductor. An equivalent circuit is shown in
Figure 12.22b; it consists of a series of transmission lines of impedgrare lengthd with a
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shunt capacitance @t the junctions. The goal is to determine the wavenumber of harmonic waves
propagating in the structure as a function of frequency. Propagating waves may have both
positive-going and negative-going components.

Equations (12.68) and (12.69) can be used to determine the change in the voltage and current of
a wave passing through a section of transmission line of lehg®ewriting Eq. (12.68),

V(z+6) = = V. exp(-wdlv) + V_ expd/v)
= (V. +V) cos@dlv) - | (V. +V) sin(®d/v) (12.115)
= V(2) cos@sdlV) - JZ, 1(2) sin(@d/v).
The final form results from expanding the complex exponentials [Eq. (12.5)] and applying Egs.

(12.66) and (12.67). A time variation ex@{) is implicitly assumed. In a similar manner, Eq.
(12.69) can be modified to

1(z+6) = 1(2) cosdlv) - | V(2) sin@d/v)/Z.. (12.116)

Equations (12.115) and (12.116) can be united in a single matrix equation,
V(z+8) COs®o/V) -jZ,, sin(®d/v)
[(z+6) -] sind/)/Z,  cosd/v)

V(2
1(2)

(12.117)

The shunt capacitance causes the following changes in voltage and current propagating across the
junction:

V/ = V(z+§), (12.118)

1/ = 1(z+8) - joC, V(z+5). (12.119)

In matrix notation, Eqgs. (12.118) and (12.119) can be written,

V(z+5) ]
1(z+8) |

1 0
-joCy 1)

V/

I /

(12.120)

The total change in voltage and current passing through one cell of the capacitively loaded
transmission line is determined by multiplication of the matrices in Egs. (12.117) and (12.120):
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CoSsd/V) -jZ,, sin(®d/v)
-] [0Ccos@d/V) +sin(@d/V)/Z ] cos@d/V)-oCLZ sin(md/v)

V/

| /

Y%
( | ] (12.117)

Applying the results of Section 8.6, the voltage and current at the cell boundaries vary
harmonically along the length of the loaded transmission line with phase advance given by

cosp = TrM/2, whereM is the transfer matrix for a cell [Eq. (12.121)].Kis the wavenumber of
the propagating wave, the phase advance over a cell of léngth = ké. Taking the trace of the
matrix of Eq. (12.121) gives the following dispersion relationship for TEM waves in a capacitively
loaded transmission line:

coskd) = cosdlv) - (CZVI25) (wd/v) sin(@d/v). (12.122)

Equation (12.122) is plotted in Figure 12.23 for three choice€3af v/25) . Itirthieof no
loading C, = 0), the dispersion relationship reduces to that of an unloaded line; both the group and
phase velocities equal(the velocity of light in the medium filing the line). With loading, the phase
velocity is reduced below (slow waves). The long wavelength (smigliresults agree with the
analysis of Section 12.9; the phase velocity and group velocity are independent of frequency. The
wave characteristics deviate considerably from those of a TEM wave in an unloaded lin& when
approachest/d. The group velocity approaches zero whga = 6 . In this case, the wave is a
standing-wave pattern with equal components of positive-going and negative-going waves. The
feature is explained below in terms of constructive interference of wave reflections from the line
discontinuities. The form of Eq. (12.122) implies that the dispersion plot repeats periodically for
higher values of wavenumber.

The final example of a dispersion curve is the iris-loaded waveguidewoThdiagram is
important in designing traveling wave particle accelerators; the phase velocity must match the
particle velocity at all points in the accelerator, and the group velocity must be high enough to
transport power through the structure effectively. In this calculation, we will determine how the
size of the apertureR) affects a TM, wave moving through the coupling holes. We will limit
attention to the long wavelength limii.(> 26 ). The iris spacing and outer radius are assumed
constant. We have already treated two special c&Bs~ 1 (uniform circular waveguide) and
R/R, = 0 (independently phased array). Curves for these limits are plotted on Figure 12.24.
Consider an intermediate case suchRIR, = 0.5. At long wavelength, inspection of the curves for
the limiting cases infers that the frequency approache2.40%/R,. This behavior can be
understood if we consider a long wavelength ;T hode in an ordinary waveguide of radils
The magnetic field is azimuthal, while the electric field is predominantly axial. The addition of thin
irises has negligible effect on the electric and magnetic field lines because tkeingdields
induce little net current flow on the irises. In the long wavelength limit, electric fields of thg, TM
mode are relatively unaffected by the radial metal plates. Current flow induced on the irises by
oscillating magnetic field is almost equal and opposite on the upstream and downstream sides. The
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Figure 12.23 Dispersion relationship for capacitively loaded transmission line as function of
C,Zgv/28. C,, shunt capacitance between iris and inner conductor; Z,, characteristic impedance
of uniform line; v, speed of light in line medium; 8, distance between irises.

only effect is exclusion of magnetic field from the interior of the thin irises.

We can understand the k diagram at short wavelengths by approximating the wave as a
free-space plane wave. The irises represent discontinuities in the waveguide along the direction of
propagation; some of the wave energy may be reflected at the discontinuity. Depending on the
geometry, there is the possibility of constructive interference of the reflected waves. To understand
this, assume that transmitted and reflected waves are observed at the=p0initrises are located
at distances, 25, 39, .. ., nd downstream. A waveform reaches a particular iris at a mé€w/k)
after it passes the poiat= 0. A reflected wave from the iris takes a timé/(w/k)  to return to the
origin. The sum of reflected waves at z = 0 is therefore

E(reflected ~ Y. expfi(ot - 2r3K)] = Y. expfot) cos(kd). (12.123)
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.Fltgure 1224 Dispersion relationships in the range 0 < k < # /8 for TM,, mode propagation in
iris-loaded waveguide of radius Ry, as a function of inner radius of iris, R. R /Ry = 0 corresponds

to individually phase cavities, R/R, = 1 corresponds to circular waveguide. Point indicates slow
wave with nonzero group velocity.

The summation of Eq. (12.123) diverges wher =/6 . In this case, there is a strong reflected
wave. The final state has equipartition of energy between waves traveling iz dmel
directions; therefore, a standing-wave pattern with zero group velocity is set up.

We can estimate the frequency of the standing wave atz/é by calculating the resonant
frequency of a hollow annular cavity with specified inner radius. In the linit (R -R) , resonant
frequencies of T},, modes are determined by solving Eq. (12.42) with boundary conditions
E,(R) =0andBy(R) = 0 . The latter condition comes about because the axial displacement
current between = 0 andr = Ris small. The boundary condition can be rewritten as
dE(R)/dr = 0. The resonant frequencies are determined by the solutions of the transcendental
equation:
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Figure 12.25 Frequency of TMy;, mode as function of R/R, in annular cavity with length 4,
outer radius R, and inner radius R. Open circuit boundary at inner radius; § < R.

I (ORIE) Yo@RJ)

Jy(@RJc) Y, (oR/C) (12.124)

Resonant frequencies as a functiorRiiR, are plotted in Figure 12.25 for the Tjyland TM,,
modes. For our exampl®&{R, = 0.5], the frequency of the hollow cavity is about 50% higher than
that of the complete cavity. This value was incorporated in the plot of Figure 12.24.

Consider some of the implications of Figure 12.24. In the limit of small coupling holes, the
cavities are independent. We saw in discussing individually phased cavities that phase velocities
much less than the speed of light can be generated by the proper choice of the phasiiiy and
Although there is latitude to achieve a wide range of phase velocity in the low coupling limit, the
low group velocity is a disadvantage. Low group velocity means that energy cannot be coupled
between cavities by a traveling wave.

The interdependence of phase and group velocity in a periodic structure enters into the design of
rf linear accelerators (Chapter 14). In an accelerator for moderate- to high-energy electrons, the
phase velocity is close ta Inspection of Figure 12.24 shows that this value of phase velocity can
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Figure 12.26 Brillouin diagram of wave properties in a capacitively loaded cylindrical waveguide
with iris spacing 8. '

be achieved in a structure with substantial coupling holes and a high value of group velocity. This
means that a useful traveling wave can be excited in an extended structure with nonzero wall
resistivity by a single power input. The boundary cavities between irises are excited by energy
carried by the traveling wave. This approach is not suitable for linear ion accelerators, where the
phase velocity must be well below the speed of light. This is the reason linear ion accelerators
generally use external rf coupling of individual cavities to synthesize a slow traveling wave on axis.
In the above derivation, we concentrated on,JWaves over the wavenumher range
0 < k < @/é. This is the range generally encountered in accelerator applications. We should
recognize, nonetheless, that higher-order modes and traveling waves witkb can be
propagated. The completek plot for a periodic waveguide structure is calleB@louin
diagram[ L. Brillouin. Wave Propagation in Periodic Structures Dover, New York, 1953]. An
example is illustrated in Figure 12.26. The periodic repetition of the curve alorigaxis is a
consequence of the axial periodicity of the waveguide structure. Note the similarities between
Figure 12.26 and the dispersion relationship for TEM waves in the capacitively loaded transmission
line (Fig. 12.22).
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